BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 27137150)

  • 1. Differential expression of long non-coding RNAs in hyperoxia-induced bronchopulmonary dysplasia.
    Bao TP; Wu R; Cheng HP; Cui XW; Tian ZF
    Cell Biochem Funct; 2016 Jul; 34(5):299-309. PubMed ID: 27137150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long non-coding RNA MALAT1 protects preterm infants with bronchopulmonary dysplasia by inhibiting cell apoptosis.
    Cai C; Qiu J; Qiu G; Chen Y; Song Z; Li J; Gong X
    BMC Pulm Med; 2017 Dec; 17(1):199. PubMed ID: 29237426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changing expression profiles of mRNA, lncRNA, circRNA, and miRNA in lung tissue reveal the pathophysiological of bronchopulmonary dysplasia (BPD) in mouse model.
    Wang J; Yin J; Wang X; Liu H; Hu Y; Yan X; Zhuang B; Yu Z; Han S
    J Cell Biochem; 2019 Jun; 120(6):9369-9380. PubMed ID: 30802330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of lncRNA H19 in Regulating Pulmonary Injury in Hyperoxia-Induced Bronchopulmonary Dysplasia Newborn Mice.
    Zhang L; Wang P; Shen Y; Huang T; Hu X; Yu W
    Am J Perinatol; 2022 Jul; 39(10):1089-1096. PubMed ID: 33285606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silencing of Long Non-Coding RNA X Inactive Specific Transcript (Xist) Contributes to Suppression of Bronchopulmonary Dysplasia Induced by Hyperoxia in Newborn Mice via microRNA-101-3p and the transforming growth factor-beta 1 (TGF-β1)/Smad3 Axis.
    Yuan W; Liu X; Zeng L; Liu H; Cai B; Huang Y; Tao X; Mo L; Zhao L; Gao C
    Med Sci Monit; 2020 Oct; 26():e922424. PubMed ID: 33070148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the expression profiles and functions of circRNAs in a newborn hyperoxia-induced rat bronchopulmonary dysplasia model.
    Cheng H; Wu B; Wang L; Hu T; Deng Z; Li D
    J Gene Med; 2020 May; 22(5):e3163. PubMed ID: 31961470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fgf10 deficiency is causative for lethality in a mouse model of bronchopulmonary dysplasia.
    Chao CM; Yahya F; Moiseenko A; Tiozzo C; Shrestha A; Ahmadvand N; El Agha E; Quantius J; Dilai S; Kheirollahi V; Jones M; Wilhem J; Carraro G; Ehrhardt H; Zimmer KP; Barreto G; Ahlbrecht K; Morty RE; Herold S; Abellar RG; Seeger W; Schermuly R; Zhang JS; Minoo P; Bellusci S
    J Pathol; 2017 Jan; 241(1):91-103. PubMed ID: 27770432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of LncRNA H19 in MAPK Signaling Pathway Implicated in the Progression of Bronchopulmonary Dysplasia.
    Mo W; Li Y; Chang W; Luo Y; Mai B; Zhou J
    Cell Transplant; 2020; 29():963689720918294. PubMed ID: 32308025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long Non-Coding RNA Profiling in a Non-Alcoholic Fatty Liver Disease Rodent Model: New Insight into Pathogenesis.
    Chen Y; Huang H; Xu C; Yu C; Li Y
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28275212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LncRNA CASC2 targets CAV1 by competitively binding with microRNA-194-5p to inhibit neonatal lung injury.
    Ji L; Liu Z; Dong C; Wu D; Yang S; Wu L
    Exp Mol Pathol; 2021 Feb; 118():104575. PubMed ID: 33212124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulmonary vascular disease is evident in gene regulation of experimental bronchopulmonary dysplasia.
    Revhaug C; Zasada M; Rognlien AGW; Günther CC; Grabowska A; Książek T; Madetko-Talowska A; Szewczyk K; Bik-Multanowski M; Kwinta P; Pietrzyk JJ; Baumbusch LO; Saugstad OD
    J Matern Fetal Neonatal Med; 2020 Jun; 33(12):2122-2130. PubMed ID: 30428746
    [No Abstract]   [Full Text] [Related]  

  • 12. Microarray analysis of long noncoding RNA expression patterns in diabetic nephropathy.
    Chen S; Dong C; Qian X; Huang S; Feng Y; Ye X; Miao H; You Q; Lu Y; Ding D
    J Diabetes Complications; 2017 Mar; 31(3):569-576. PubMed ID: 28007334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated MicroRNA-mRNA Analyses of Distinct Expression Profiles in Hyperoxia-Induced Bronchopulmonary Dysplasia in Neonatal Mice.
    Wang C; Zhang S; Zhu L; Duan J; Huang B; Zhang X
    Am J Perinatol; 2022 Nov; 39(15):1702-1710. PubMed ID: 33757141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in pulmonary tissue structure and KL-6/MUC1 expression in a newborn rat model of hyperoxia-induced bronchopulmonary dysplasia.
    Zhu Y; Fu J; You K; Jin L; Wang M; Lu D; Xue X
    Exp Lung Res; 2013 Dec; 39(10):417-26. PubMed ID: 24298937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recruitment of PVT1 Enhances YTHDC1-Mediated m6A Modification of IL-33 in Hyperoxia-Induced Lung Injury During Bronchopulmonary Dysplasia.
    Bao T; Liu X; Hu J; Ma M; Li J; Cao L; Yu B; Cheng H; Zhao S; Tian Z
    Inflammation; 2024 Apr; 47(2):469-482. PubMed ID: 37917328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aberrant expression of long noncoding RNAs in early diabetic retinopathy.
    Yan B; Tao ZF; Li XM; Zhang H; Yao J; Jiang Q
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):941-51. PubMed ID: 24436191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene Expression Profiling Identifies Cell Proliferation and Inflammation as the Predominant Pathways Regulated by Aryl Hydrocarbon Receptor in Primary Human Fetal Lung Cells Exposed to Hyperoxia.
    Shivanna B; Maity S; Zhang S; Patel A; Jiang W; Wang L; Welty SE; Belmont J; Coarfa C; Moorthy B
    Toxicol Sci; 2016 Jul; 152(1):155-68. PubMed ID: 27103661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long non-coding RNA MALAT1 targeting STING transcription promotes bronchopulmonary dysplasia through regulation of CREB.
    Chen JH; Feng DD; Chen YF; Yang CX; Juan CX; Cao Q; Chen X; Liu S; Zhou GP
    J Cell Mol Med; 2020 Sep; 24(18):10478-10492. PubMed ID: 32812343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative analysis of lncRNAs, miRNAs, and mRNAs-associated ceRNA network in a neonatal mouse model of bronchopulmonary dysplasia.
    Dong Y; Zhang X
    J Matern Fetal Neonatal Med; 2021 Oct; 34(19):3234-3245. PubMed ID: 32924699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immune System Regulation Affected by a Murine Experimental Model of Bronchopulmonary Dysplasia: Genomic and Epigenetic Findings.
    Revhaug C; Bik-Multanowski M; Zasada M; Rognlien AGW; Günther CC; Ksiązek T; Madetko-Talowska A; Szewczyk K; Grabowska A; Kwinta P; Pietrzyk JJ; Baumbusch LO; Saugstad OD
    Neonatology; 2019; 116(3):269-277. PubMed ID: 31454811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.