These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2713721)

  • 1. Brainstem location of serotonin neurons projecting to the caudal neurosecretory complex.
    Cohen SL; Kriebel RM
    Brain Res Bull; 1989 Mar; 22(3):481-7. PubMed ID: 2713721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terminal processes of serotonin neurons in the caudal spinal cord of the molly, Poecilia latipinna, project to the leptomeninges and urophysis.
    Cohen SL; Kriebel RM
    Cell Tissue Res; 1989 Mar; 255(3):619-25. PubMed ID: 2706662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytology of brain stem neurons projecting to the caudal neurosecretory complex: an HRP-electron microscopic study.
    Miller KE; Kriebel RM
    Brain Res Bull; 1986 Feb; 16(2):183-8. PubMed ID: 3697787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origins of serotonergic projections to the spinal cord in rat: an immunocytochemical-retrograde transport study.
    Bowker RM; Westlund KN; Coulter JD
    Brain Res; 1981 Dec; 226(1-2):187-99. PubMed ID: 7028211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topographic principles in the spinal projections of serotonergic and non-serotonergic brainstem neurons in the rat.
    Skagerberg G; Björklund A
    Neuroscience; 1985 Jun; 15(2):445-80. PubMed ID: 4022334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential projections of cat medullary raphe neurons demonstrated by retrograde labelling following spinal cord lesions.
    Martin RF; Jordan LM; Willis WD
    J Comp Neurol; 1978 Nov; 182(1):77-88. PubMed ID: 701490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of projections from the midbrain raphe nuclei to the hypothalamic paraventricular nucleus in the rat: a combined retrograde and anterograde tracing study.
    Larsen PJ; Hay-Schmidt A; Vrang N; Mikkelsen JD
    Neuroscience; 1996 Feb; 70(4):963-88. PubMed ID: 8848177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monoamines in the caudal neurosecretory complex: biochemistry and immunohistochemistry.
    McKeon TW; Cohen SL; Black EE; Kriebel RM; Parsons RL
    Brain Res Bull; 1988 Jul; 21(1):37-42. PubMed ID: 3219599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain stem innervation of the caudal neurosecretory system.
    O'Brien JP; Kriebel RM
    Cell Tissue Res; 1982; 227(1):153-60. PubMed ID: 7172207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serotonergic and non-serotonergic raphe neurons projecting to the feline lumbar and cervical spinal cord: a quantitative horseradish peroxidase-immunocytochemical study.
    Bowker RM; Reddy VK; Fung SJ; Chan JY; Barnes CD
    Neurosci Lett; 1987 Mar; 75(1):31-7. PubMed ID: 3574767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: further studies on the anatomy of pain modulation.
    Basbaum AI; Fields HL
    J Comp Neurol; 1979 Oct; 187(3):513-31. PubMed ID: 489790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of serotonin and non-serotonin-containing neurons of the mid-brain raphe projecting to the entorhinal area and the hippocampal formation. A combined immunohistochemical and fluorescent retrograde tracing study in the rat brain.
    Köhler C; Steinbusch H
    Neuroscience; 1982 Apr; 7(4):951-75. PubMed ID: 7048127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum in the rat.
    Rye DB; Lee HJ; Saper CB; Wainer BH
    J Comp Neurol; 1988 Mar; 269(3):315-41. PubMed ID: 2453532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origins of serotonergic projections to the lumbar spinal cord in the monkey using a combined retrograde transport and immunocytochemical technique.
    Bowker RM; Westlund KN; Coulter JD
    Brain Res Bull; 1982; 9(1-6):271-8. PubMed ID: 6756550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mormyrid brainstem. I. Distribution of brainstem neurones projecting to the spinal cord in Gnathonemus petersii. An HRP study.
    Hlavacek M; Tahar M; Libouban S; Szabo T
    J Hirnforsch; 1984; 25(6):603-15. PubMed ID: 6526990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary afferent projections from the upper respiratory tract in the muskrat.
    Panneton WM
    J Comp Neurol; 1991 Jun; 308(1):51-65. PubMed ID: 1714922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and organization of the descending serotonergic brainstem-spinal projections in the sea lamprey.
    Barreiro-Iglesias A; Villar-Cerviño V; Anadón R; Rodicio MC
    J Chem Neuroanat; 2008 Oct; 36(2):77-84. PubMed ID: 18602462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat.
    Semba K; Reiner PB; McGeer EG; Fibiger HC
    J Comp Neurol; 1988 Jan; 267(3):433-53. PubMed ID: 2449477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study.
    Semba K; Fibiger HC
    J Comp Neurol; 1992 Sep; 323(3):387-410. PubMed ID: 1281170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of serotonergic raphespinal projections in Xenopus laevis.
    van Mier P; Joosten HW; van Rheden R; ten Donkelaar HJ
    Int J Dev Neurosci; 1986; 4(5):465-75. PubMed ID: 3455605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.