These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27137284)

  • 21. Laser display system for multi-depth screen projection scenarios.
    La Torre JP; Mayes N; Riza NA
    Appl Opt; 2017 Nov; 56(32):9023-9029. PubMed ID: 29131188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size.
    Li YL; Li NN; Wang D; Chu F; Lee SD; Zheng YW; Wang QH
    Light Sci Appl; 2022 Jun; 11(1):188. PubMed ID: 35729102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Projection display for the generation of two orthogonal polarized images using liquid crystal on silicon panels and light emitting diodes.
    Bogaert L; Meuret Y; Van Giel B; Murat H; De Smet H; Thienpont H
    Appl Opt; 2008 Apr; 47(10):1535-42. PubMed ID: 18382582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Addressable spatial light modulators for eye-tracking autostereoscopic three-dimensional display using a scanning laser.
    Zhuang Z; Zhang L; Surman P; Song W; Thibault S; Sun XW; Zheng Y
    Appl Opt; 2018 Jun; 57(16):4457-4466. PubMed ID: 29877393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Projection-type dual-view three-dimensional display system based on integral imaging.
    Jeong J; Lee CK; Hong K; Yeom J; Lee B
    Appl Opt; 2014 Sep; 53(27):G12-8. PubMed ID: 25322119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lamina 3D display: projection-type depth-fused display using polarization-encoded depth information.
    Park SG; Yoon S; Yeom J; Baek H; Min SW; Lee B
    Opt Express; 2014 Oct; 22(21):26162-72. PubMed ID: 25401648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual-view integral imaging 3D display by using orthogonal polarizer array and polarization switcher.
    Wang QH; Ji CC; Li L; Deng H
    Opt Express; 2016 Jan; 24(1):9-16. PubMed ID: 26832233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compact dual-focal augmented reality head-up display using a single picture generation unit with polarization multiplexing.
    Liu Y; Dong J; Qiu Y; Yang BR; Qin Z
    Opt Express; 2023 Oct; 31(22):35922-35936. PubMed ID: 38017753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual-view integral imaging three-dimensional display using polarized glasses.
    Wu F; Lv GJ; Deng H; Zhao BC; Wang QH
    Appl Opt; 2018 Feb; 57(6):1447-1449. PubMed ID: 29469846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Super multi-view three-dimensional display through spatial-spectrum time-multiplexing of planar aligned OLED microdisplays.
    Teng D; Liu L; Wang B
    Opt Express; 2014 Dec; 22(25):31448-57. PubMed ID: 25607095
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phase Target-Based Calibration of Projector Radial Chromatic Aberration for Color Fringe 3D Measurement Systems.
    Zhang Y; Sun Y; Gao N; Meng Z; Zhang Z
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integral imaging-based 2D/3D convertible display system by using holographic optical element and polymer dispersed liquid crystal.
    Zhang HL; Deng H; Li JJ; He MY; Li DH; Wang QH
    Opt Lett; 2019 Jan; 44(2):387-390. PubMed ID: 30644907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 2D/3D mixed frontal projection system based on integral imaging.
    Deng H; Li Q; He W; Li X; Ren H; Chen C
    Opt Express; 2020 Aug; 28(18):26385-26394. PubMed ID: 32906911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional/two-dimensional convertible projection screen using see-through integral imaging based on holographic optical element.
    Yeom J; Jeong J; Jang C; Li G; Hong K; Lee B
    Appl Opt; 2015 Oct; 54(30):8856-62. PubMed ID: 26560370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of a polarized head-mounted projection display using ferroelectric liquid-crystal-on-silicon microdisplays.
    Zhang R; Hua H
    Appl Opt; 2008 May; 47(15):2888-96. PubMed ID: 18493297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Table screen 360-degree three-dimensional display using a small array of high-speed projectors.
    Takaki Y; Uchida S
    Opt Express; 2012 Apr; 20(8):8848-61. PubMed ID: 22513595
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Full-color retinal-projection near-eye display using a multiplexing-encoding holographic method.
    Song W; Li X; Zheng Y; Liu Y; Wang Y
    Opt Express; 2021 Mar; 29(6):8098-8107. PubMed ID: 33820262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Foveated display system based on a doublet geometric phase lens.
    Yoo C; Xiong J; Moon S; Yoo D; Lee CK; Wu ST; Lee B
    Opt Express; 2020 Aug; 28(16):23690-23702. PubMed ID: 32752362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A crosstalk-suppressed dense multi-view light-field display based on real-time light-field pickup and reconstruction.
    Yang L; Sang X; Yu X; Liu B; Yan B; Wang K; Yu C
    Opt Express; 2018 Dec; 26(26):34412-34427. PubMed ID: 30650863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep-learning based 3D birefringence image generation using 2D multi-view holographic images.
    Kim H; Jun T; Lee H; Chae BG; Yoon M; Kim C
    Sci Rep; 2024 Apr; 14(1):9879. PubMed ID: 38684698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.