BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 27137645)

  • 1. Increasing Ubiquitin Ion Resistance to Unfolding in the Gas Phase Using Chloride Adduction: Preserving More "Native-Like" Conformations Despite Collisional Activation.
    Wagner ND; Kim D; Russell DH
    Anal Chem; 2016 Jun; 88(11):5934-40. PubMed ID: 27137645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Closely Related Are Conformations of Protein Ions Sampled by IM-MS to Native Solution Structures?
    Chen SH; Russell DH
    J Am Soc Mass Spectrom; 2015 Sep; 26(9):1433-43. PubMed ID: 26115967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Metal Ion Adduction in the ESI Charged Residue Mechanism via Gas-Phase Ion/Ion Chemistry.
    Brundridge NM; Koers AM; McLuckey SA
    J Am Soc Mass Spectrom; 2024 Jun; 35(6):1342-1351. PubMed ID: 38775832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the mechanism of salt-induced signal suppression in protein electrospray mass spectrometry using experiments and molecular dynamics simulations.
    Metwally H; McAllister RG; Konermann L
    Anal Chem; 2015 Feb; 87(4):2434-42. PubMed ID: 25594702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Ions Generated by Native Electrospray Ionization: Comparison of Gas Phase, Solution, and Crystal Structures.
    Bakhtiari M; Konermann L
    J Phys Chem B; 2019 Feb; 123(8):1784-1796. PubMed ID: 30724571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of metal ion adduction on the gas-phase conformations of protein ions.
    Flick TG; Merenbloom SI; Williams ER
    J Am Soc Mass Spectrom; 2013 Nov; 24(11):1654-62. PubMed ID: 23733259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural stability from solution to the gas phase: native solution structure of ubiquitin survives analysis in a solvent-free ion mobility-mass spectrometry environment.
    Wyttenbach T; Bowers MT
    J Phys Chem B; 2011 Oct; 115(42):12266-75. PubMed ID: 21905704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the mechanism of protein electrospray ionization from salt adduction measurements.
    Yue X; Vahidi S; Konermann L
    J Am Soc Mass Spectrom; 2014 Aug; 25(8):1322-31. PubMed ID: 24839193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution dependence of the collisional activation of ubiquitin [M + 7H](7+) ions.
    Shi H; Atlasevich N; Merenbloom SI; Clemmer DE
    J Am Soc Mass Spectrom; 2014 Dec; 25(12):2000-8. PubMed ID: 24658799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ions from Solution to the Gas Phase: A Molecular Dynamics Simulation of the Structural Evolution of Substance P during Desolvation of Charged Nanodroplets Generated by Electrospray Ionization.
    Kim D; Wagner N; Wooding K; Clemmer DE; Russell DH
    J Am Chem Soc; 2017 Mar; 139(8):2981-2988. PubMed ID: 28128939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of Native-like Gaseous Proteins from Electrospray Droplets via the Charged Residue Mechanism: Insights from Molecular Dynamics Simulations.
    McAllister RG; Metwally H; Sun Y; Konermann L
    J Am Chem Soc; 2015 Oct; 137(39):12667-76. PubMed ID: 26325619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein Structural Studies by Traveling Wave Ion Mobility Spectrometry: A Critical Look at Electrospray Sources and Calibration Issues.
    Sun Y; Vahidi S; Sowole MA; Konermann L
    J Am Soc Mass Spectrom; 2016 Jan; 27(1):31-40. PubMed ID: 26369778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion Mobility and Gas-Phase Covalent Labeling Study of the Structure and Reactivity of Gaseous Ubiquitin Ions Electrosprayed from Aqueous and Denaturing Solutions.
    Carvalho VV; See Kit MC; Webb IK
    J Am Soc Mass Spectrom; 2020 May; 31(5):1037-1046. PubMed ID: 32255627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Dynamics simulations of the electrospray process: formation of NaCl clusters via the charged residue mechanism.
    Konermann L; McAllister RG; Metwally H
    J Phys Chem B; 2014 Oct; 118(41):12025-33. PubMed ID: 25242574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH Dependence of the Number of Discrete Conformers of Carbonic Anhydrase 2, as Evaluated from Collision Cross-Section Using Ion Mobility Coupled with Electrospray Ionization.
    Nabuchi Y; Hirose K; Takayama M
    Mass Spectrom (Tokyo); 2018; 7(1):A0064. PubMed ID: 29515944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the structures and folding of free proteins using 2-D gas-phase separations: observation of multiple unfolded conformers.
    Shvartsburg AA; Li F; Tang K; Smith RD
    Anal Chem; 2006 May; 78(10):3304-15. PubMed ID: 16689531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution additives that desalt protein ions in native mass spectrometry.
    Flick TG; Cassou CA; Chang TM; Williams ER
    Anal Chem; 2012 Sep; 84(17):7511-7. PubMed ID: 22881839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New High Resolution Ion Mobility Mass Spectrometer Capable of Measurements of Collision Cross Sections from 150 to 520 K.
    Ujma J; Giles K; Morris M; Barran PE
    Anal Chem; 2016 Oct; 88(19):9469-9478. PubMed ID: 27573618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multidimensional separations of ubiquitin conformers in the gas phase: relating ion cross sections to H/D exchange measurements.
    Robinson EW; Williams ER
    J Am Soc Mass Spectrom; 2005 Sep; 16(9):1427-1437. PubMed ID: 16023362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partially disordered proteins studied by ion mobility-mass spectrometry: implications for the preservation of solution phase structure in the gas phase.
    Vahidi S; Stocks BB; Konermann L
    Anal Chem; 2013 Nov; 85(21):10471-8. PubMed ID: 24088086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.