These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27137697)

  • 1. [From the discovery of microbial Mep-Amt ammonium transporters to human Rhesus factors].
    Boeckstaens M
    Med Sci (Paris); 2016 Apr; 32(4):394-400. PubMed ID: 27137697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From yeast ammonium transporters to Rhesus proteins, isolation and functional characterization.
    Marini AM; Boeckstaens M; André B
    Transfus Clin Biol; 2006; 13(1-2):95-6. PubMed ID: 16574457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen isotope signature evidences ammonium deprotonation as a common transport mechanism for the AMT-Mep-Rh protein superfamily.
    Ariz I; Boeckstaens M; Gouveia C; Martins AP; Sanz-Luque E; Fernández E; Soveral G; von Wirén N; Marini AM; Aparicio-Tejo PM; Cruz C
    Sci Adv; 2018 Sep; 4(9):eaar3599. PubMed ID: 30214933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast.
    Marini AM; Matassi G; Raynal V; André B; Cartron JP; Chérif-Zahar B
    Nat Genet; 2000 Nov; 26(3):341-4. PubMed ID: 11062476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coexistence of Ammonium Transporter and Channel Mechanisms in Amt-Mep-Rh Twin-His Variants Impairs the Filamentation Signaling Capacity of Fungal Mep2 Transceptors.
    Williamson G; Brito AS; Bizior A; Tamburrino G; Dias Mirandela G; Harris T; Hoskisson PA; Zachariae U; Marini AM; Boeckstaens M; Javelle A
    mBio; 2022 Apr; 13(2):e0291321. PubMed ID: 35196127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional insights into the AmtB/Mep/Rh protein family.
    Li XD; Lupo D; Zheng L; Winkler F
    Transfus Clin Biol; 2006; 13(1-2):65-9. PubMed ID: 16564194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SNPs altering ammonium transport activity of human Rhesus factors characterized by a yeast-based functional assay.
    Deschuyteneer A; Boeckstaens M; De Mees C; Van Vooren P; Wintjens R; Marini AM
    PLoS One; 2013; 8(8):e71092. PubMed ID: 23967154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching substrate specificity of AMT/MEP/ Rh proteins.
    Neuhäuser B; Dynowski M; Ludewig U
    Channels (Austin); 2014; 8(6):496-502. PubMed ID: 25483282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prokaryotic ammonium transporters: what has three decades of research revealed?
    Bizior A; Williamson G; Harris T; Hoskisson PA; Javelle A
    Microbiology (Reading); 2023 Jul; 169(7):. PubMed ID: 37450375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rh proteins vs Amt proteins: an organismal and phylogenetic perspective on CO2 and NH3 gas channels.
    Peng J; Huang CH
    Transfus Clin Biol; 2006; 13(1-2):85-94. PubMed ID: 16564193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A twin histidine motif is the core structure for high-affinity substrate selection in plant ammonium transporters.
    Ganz P; Ijato T; Porras-Murrilo R; Stührwohldt N; Ludewig U; Neuhäuser B
    J Biol Chem; 2020 Mar; 295(10):3362-3370. PubMed ID: 31988244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural involvement in substrate recognition of an essential aspartate residue conserved in Mep/Amt and Rh-type ammonium transporters.
    Marini AM; Boeckstaens M; Benjelloun F; Chérif-Zahar B; André B
    Curr Genet; 2006 Jun; 49(6):364-74. PubMed ID: 16477434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological ammonium transporters: evolution and diversification.
    Williamson G; Harris T; Bizior A; Hoskisson PA; Pritchard L; Javelle A
    FEBS J; 2024 Sep; 291(17):3786-3810. PubMed ID: 38265636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new face of the Rhesus antigen.
    Heitman J; Agre P
    Nat Genet; 2000 Nov; 26(3):258-9. PubMed ID: 11062455
    [No Abstract]   [Full Text] [Related]  

  • 15. Physiological role of the putative ammonium transporter RhCG in the mouse.
    Biver S; Scohy S; Szpirer J; Szpirer C; André B; Marini AM
    Transfus Clin Biol; 2006; 13(1-2):167-8. PubMed ID: 16564721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.).
    Gu R; Duan F; An X; Zhang F; von Wirén N; Yuan L
    Plant Cell Physiol; 2013 Sep; 54(9):1515-24. PubMed ID: 23832511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different transport mechanisms in plant and human AMT/Rh-type ammonium transporters.
    Mayer M; Schaaf G; Mouro I; Lopez C; Colin Y; Neumann P; Cartron JP; Ludewig U
    J Gen Physiol; 2006 Feb; 127(2):133-44. PubMed ID: 16446503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene characterization and transcription analysis of two new ammonium transporters in pear rootstock (Pyrus betulaefolia).
    Li H; Han JL; Chang YH; Lin J; Yang QS
    J Plant Res; 2016 Jul; 129(4):737-748. PubMed ID: 26943161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane potential independent transport of NH
    Cueto-Rojas HF; Milne N; van Helmond W; Pieterse MM; van Maris AJA; Daran JM; Wahl SA
    BMC Syst Biol; 2017 Apr; 11(1):49. PubMed ID: 28412970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms of ammonium transport and accumulation in plants.
    Ludewig U; Neuhäuser B; Dynowski M
    FEBS Lett; 2007 May; 581(12):2301-8. PubMed ID: 17397837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.