These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27137885)

  • 1. Actionable pathways: interactive discovery of therapeutic targets using signaling pathway models.
    Salavert F; Hidago MR; Amadoz A; Çubuk C; Medina I; Crespo D; Carbonell-Caballero J; Dopazo J
    Nucleic Acids Res; 2016 Jul; 44(W1):W212-6. PubMed ID: 27137885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of key pathways in sorafenib-treated hepatocellular carcinoma based on a PCR-array.
    Liu Y; Wang P; Li S; Yin L; Shen H; Liu R
    Int J Clin Exp Pathol; 2015; 8(3):3027-35. PubMed ID: 26045814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential metabolic activity and discovery of therapeutic targets using summarized metabolic pathway models.
    Çubuk C; Hidalgo MR; Amadoz A; Rian K; Salavert F; Pujana MA; Mateo F; Herranz C; Carbonell-Caballero J; Dopazo J
    NPJ Syst Biol Appl; 2019; 5():7. PubMed ID: 30854222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolving landscape of therapeutic drug development for hepatocellular carcinoma.
    Chong DQ; Tan IB; Choo SP; Toh HC
    Contemp Clin Trials; 2013 Nov; 36(2):605-15. PubMed ID: 23591326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rethinking future development of molecular therapies in hepatocellular carcinoma: a bottom-up approach.
    Villanueva A
    J Hepatol; 2013 Aug; 59(2):392-5. PubMed ID: 23548196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathways and targets in hepatocellular carcinoma.
    Psyrri A; Arkadopoulos N; Vassilakopoulou M; Smyrniotis V; Dimitriadis G
    Expert Rev Anticancer Ther; 2012 Oct; 12(10):1347-57. PubMed ID: 23176622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the role of structural integrity and differential expression of integrin profiling to identify potential therapeutic targets in breast cancer.
    Das V; Kalyan G; Hazra S; Pal M
    J Cell Physiol; 2018 Jan; 233(1):168-185. PubMed ID: 28120356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tYNA platform for comparative interactomics: a web tool for managing, comparing and mining multiple networks.
    Yip KY; Yu H; Kim PM; Schultz M; Gerstein M
    Bioinformatics; 2006 Dec; 22(23):2968-70. PubMed ID: 17021160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iodide- and glucose-handling gene expression regulated by sorafenib or cabozantinib in papillary thyroid cancer.
    Ruan M; Liu M; Dong Q; Chen L
    J Clin Endocrinol Metab; 2015 May; 100(5):1771-9. PubMed ID: 25768669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PathRings: a web-based tool for exploration of ortholog and expression data in biological pathways.
    Zhu Y; Sun L; Garbarino A; Schmidt C; Fang J; Chen J
    BMC Bioinformatics; 2015 May; 16(1):165. PubMed ID: 25982732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel targeted agents for the treatment of advanced breast cancer.
    de la Vega M; Díaz-Cantón E; Alvarez RH
    Future Med Chem; 2012 May; 4(7):893-914. PubMed ID: 22571614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNAs Associated with Von Hippel-Lindau Pathway in Renal Cell Carcinoma: A Comprehensive Review.
    Schanza LM; Seles M; Stotz M; Fosselteder J; Hutterer GC; Pichler M; Stiegelbauer V
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29165391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspectives of Reprogramming Breast Cancer Metabolism.
    Wang YP; Lei QY
    Adv Exp Med Biol; 2017; 1026():217-232. PubMed ID: 29282686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of cancer gene co-expression network and metabolic network to uncover potential cancer drug targets.
    Chen J; Ma M; Shen N; Xi JJ; Tian W
    J Proteome Res; 2013 Jun; 12(6):2354-64. PubMed ID: 23590569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PathJam: a new service for integrating biological pathway information.
    Glez-Peña D; Reboiro-Jato M; Domínguez R; Gómez-López G; Pisano DG; Fdez-Riverola F
    J Integr Bioinform; 2010 Oct; 7(1):. PubMed ID: 20980714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering gene re-ranking efficiency and conserved gene-gene relationships derived from gene co-expression network analysis on breast cancer data.
    Bourdakou MM; Athanasiadis EI; Spyrou GM
    Sci Rep; 2016 Feb; 6():20518. PubMed ID: 26892392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Editorial overview: cancer: from target discovery to targeted therapy: the risky business of target validation.
    Cruzalegui F
    Curr Opin Pharmacol; 2014 Aug; 17():iv-vi. PubMed ID: 25220882
    [No Abstract]   [Full Text] [Related]  

  • 18. PATIKAweb: a Web interface for analyzing biological pathways through advanced querying and visualization.
    Dogrusoz U; Erson EZ; Giral E; Demir E; Babur O; Cetintas A; Colak R
    Bioinformatics; 2006 Feb; 22(3):374-5. PubMed ID: 16287939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted Therapy for Hepatocellular Carcinoma.
    Ohri N; Kaubisch A; Garg M; Guha C
    Semin Radiat Oncol; 2016 Oct; 26(4):338-43. PubMed ID: 27619254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted treatment of ovarian cancer--the multiple - kinase - inhibitor sorafenib as a potential option.
    Smolle E; Taucher V; Petru E; Haybaeck J
    Anticancer Res; 2014 Apr; 34(4):1519-30. PubMed ID: 24692678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.