These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 27137995)

  • 1. Cation-halide transport through peptide pores containing aminopicolinic acid.
    Basak D; Sridhar S; Bera AK; Madhavan N
    Org Biomol Chem; 2016 May; 14(20):4712-7. PubMed ID: 27137995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cation-Transporting Peptides: Scaffolds for Functionalized Pores?
    Behera H; Ramkumar V; Madhavan N
    Chemistry; 2015 Jul; 21(28):10179-84. PubMed ID: 26041642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A minimalistic tetrapeptide amphiphile scaffold for transmembrane pores with a preference for sodium.
    Basak D; Sridhar S; Bera AK; Madhavan N
    Bioorg Med Chem Lett; 2017 Jul; 27(13):2886-2889. PubMed ID: 28487073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aminobenzoic acid incorporated octapeptides for cation transport.
    Benke BP; Madhavan N
    Bioorg Med Chem; 2015 Apr; 23(7):1413-20. PubMed ID: 25766627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic ion channels: from pores to biological applications.
    Gokel GW; Negin S
    Acc Chem Res; 2013 Dec; 46(12):2824-33. PubMed ID: 23738778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligoether-strapped calix[4]pyrrole: an ion-pair receptor displaying cation-dependent chloride anion transport.
    Park IW; Yoo J; Kim B; Adhikari S; Kim SK; Yeon Y; Haynes CJ; Sutton JL; Tong CC; Lynch VM; Sessler JL; Gale PA; Lee CH
    Chemistry; 2012 Feb; 18(9):2514-23. PubMed ID: 22298258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permeation of halide anions through phospholipid bilayers occurs by the solubility-diffusion mechanism.
    Paula S; Volkov AG; Deamer DW
    Biophys J; 1998 Jan; 74(1):319-27. PubMed ID: 9449332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxylate anion diminishes chloride transport through a synthetic, self-assembled transmembrane pore.
    You L; Ferdani R; Li R; Kramer JP; Winter RE; Gokel GW
    Chemistry; 2008; 14(1):382-96. PubMed ID: 17924596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion transport across transmembrane pores.
    Leontiadou H; Mark AE; Marrink SJ
    Biophys J; 2007 Jun; 92(12):4209-15. PubMed ID: 17384063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembling cyclic tetrapeptide from alternating C-linked carbo-beta-amino acid [(S)-beta-Caa] and alpha-aminoxy acid [(R)-Ama]: a selective chloride ion receptor.
    Sharma GV; Manohar V; Dutta SK; Sridhar B; Ramesh V; Srinivas R; Kunwar AC
    J Org Chem; 2010 Feb; 75(4):1087-94. PubMed ID: 20095586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for dimer formation by an amphiphilic heptapeptide that mediates chloride and carboxyfluorescein release from liposomes.
    Pajewski R; Ferdani R; Pajewska J; Djedovic N; Schlesinger PH; Gokel GW
    Org Biomol Chem; 2005 Feb; 3(4):619-25. PubMed ID: 15703797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cation dependence of chloride ion complexation by open-chained receptor molecules in chloroform solution.
    Pajewski R; Ferdani R; Pajewska J; Li R; Gokel GW
    J Am Chem Soc; 2005 Dec; 127(51):18281-95. PubMed ID: 16366583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and transmembrane anion/cation symport activity of a rigid bis(choloyl) conjugate functionalized with guanidino groups.
    Deng LQ; Li Z; Lu YM; Chen JX; Zhou CQ; Wang B; Chen WH
    Bioorg Med Chem Lett; 2015 Feb; 25(4):745-8. PubMed ID: 25616903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dianilides of dipicolinic acid function as synthetic chloride channels.
    Yamnitz CR; Negin S; Carasel IA; Winter RK; Gokel GW
    Chem Commun (Camb); 2010 Apr; 46(16):2838-40. PubMed ID: 20369200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonesterified fatty acids induce transmembrane monovalent cation flux: host-guest interactions as determinants of fatty acid-induced ion transport.
    Zeng Y; Han X; Schlesinger P; Gross RW
    Biochemistry; 1998 Jun; 37(26):9497-508. PubMed ID: 9649333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloride transport across lipid bilayers and transmembrane potential induction by an oligophenoxyacetamide.
    Sidorov V; Kotch FW; Kuebler JL; Lam YF; Davis JT
    J Am Chem Soc; 2003 Mar; 125(10):2840-1. PubMed ID: 12617627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloride ion efflux from liposomes is controlled by sidechains in a channel-forming heptapeptide.
    You L; Ferdani R; Gokel GW
    Chem Commun (Camb); 2006 Feb; (6):603-5. PubMed ID: 16446823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rigid-rod molecules in biomembrane models: from hydrogen-bonded chains to synthetic multifunctional pores.
    Sakai N; Mareda J; Matile S
    Acc Chem Res; 2005 Feb; 38(2):79-87. PubMed ID: 15709727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of permeation through phosphatidylcholine bilayers of N-dipicolinyl-alpha- and -beta-oligopeptides.
    Gardiner J; Thomae AV; Mathad RI; Seebach D; Krämer SD
    Chem Biodivers; 2006 Nov; 3(11):1181-201. PubMed ID: 17193232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.