These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27138234)

  • 1. Molecular Buffers Permit Sensitivity Tuning and Inversion of Riboswitch Signals.
    Rugbjerg P; Genee HJ; Jensen K; Sarup-Lytzen K; Sommer MO
    ACS Synth Biol; 2016 Jul; 5(7):632-8. PubMed ID: 27138234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution-guided engineering of small-molecule biosensors.
    Snoek T; Chaberski EK; Ambri F; Kol S; Bjørn SP; Pang B; Barajas JF; Welner DH; Jensen MK; Keasling JD
    Nucleic Acids Res; 2020 Jan; 48(1):e3. PubMed ID: 31777933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering an NADPH/NADP
    Zhang J; Sonnenschein N; Pihl TP; Pedersen KR; Jensen MK; Keasling JD
    ACS Synth Biol; 2016 Dec; 5(12):1546-1556. PubMed ID: 27419466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Hybrid Input Part Using Riboswitch and Transcriptional Repressor for Signal Inverting Amplifier.
    Jang S; Jang S; Noh MH; Lim HG; Jung GY
    ACS Synth Biol; 2018 Sep; 7(9):2199-2204. PubMed ID: 30092633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating and amplifying signal from riboswitch biosensors.
    Goodson MS; Harbaugh SV; Chushak YG; Kelley-Loughnane N
    Methods Enzymol; 2015; 550():73-91. PubMed ID: 25605381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices.
    Ceres P; Garst AD; Marcano-Velázquez JG; Batey RT
    ACS Synth Biol; 2013 Aug; 2(8):463-72. PubMed ID: 23654267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of ribozyme-based aminoglycoside switches of gene expression by in vivo genetic selection in Saccharomyces cerevisiae.
    Klauser B; Rehm C; Summerer D; Hartig JS
    Methods Enzymol; 2015; 550():301-20. PubMed ID: 25605392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamically reshaping signaling networks to program cell fate via genetic controllers.
    Galloway KE; Franco E; Smolke CD
    Science; 2013 Sep; 341(6152):1235005. PubMed ID: 23950497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal amplification and optimization of riboswitch-based hybrid inputs by modular and titratable toehold switches.
    Hwang Y; Kim SG; Jang S; Kim J; Jung GY
    J Biol Eng; 2021 Mar; 15(1):11. PubMed ID: 33741029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering a Model Cell for Rational Tuning of GPCR Signaling.
    Shaw WM; Yamauchi H; Mead J; Gowers GF; Bell DJ; Öling D; Larsson N; Wigglesworth M; Ladds G; Ellis T
    Cell; 2019 Apr; 177(3):782-796.e27. PubMed ID: 30955892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide-Dependent Growth in Yeast via Fine-Tuned Peptide/GPCR-Activated Essential Gene Expression.
    Billerbeck S; Cornish VW
    Biochemistry; 2022 Feb; 61(3):150-159. PubMed ID: 35023728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A synthetic library of RNA control modules for predictable tuning of gene expression in yeast.
    Babiskin AH; Smolke CD
    Mol Syst Biol; 2011 Mar; 7():471. PubMed ID: 21364573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribo-attenuators: novel elements for reliable and modular riboswitch engineering.
    Folliard T; Mertins B; Steel H; Prescott TP; Newport T; Jones CW; Wadhams G; Bayer T; Armitage JP; Papachristodoulou A; Rothschild LJ
    Sci Rep; 2017 Jul; 7(1):4599. PubMed ID: 28676696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical analysis of nuclear intensity dynamics for Mig1-GFP under consideration of bleaching effects and background noise in Saccharomyces cerevisiae.
    Frey S; Sott K; Smedh M; Millat T; Dahl P; Wolkenhauer O; Goksör M
    Mol Biosyst; 2011 Jan; 7(1):215-23. PubMed ID: 20967382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown.
    Hasunuma T; Ishii J; Kondo A
    Curr Opin Chem Biol; 2015 Dec; 29():1-9. PubMed ID: 26113493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.
    Kim S; Lee K; Bae SJ; Hahn JS
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2705-14. PubMed ID: 25573467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of synthetic signaling scaffolds by recombination of modular protein domains.
    Lai A; Sato PM; Peisajovich SG
    ACS Synth Biol; 2015 Jun; 4(6):714-22. PubMed ID: 25587847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribozyme-based aminoglycoside switches of gene expression engineered by genetic selection in S. cerevisiae.
    Klauser B; Atanasov J; Siewert LK; Hartig JS
    ACS Synth Biol; 2015 May; 4(5):516-25. PubMed ID: 24871672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic conversion of a graded receptor signal into a tunable, reversible switch.
    Palani S; Sarkar CA
    Mol Syst Biol; 2011 Mar; 7():480. PubMed ID: 21451590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of 5-FOA and 5-FU resistance by Saccharomyces cerevisiae YJL055W.
    Ko N; Nishihama R; Pringle JR
    Yeast; 2008 Feb; 25(2):155-60. PubMed ID: 18186026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.