These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27138234)

  • 21. Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules.
    Babiskin AH; Smolke CD
    Nucleic Acids Res; 2011 Jul; 39(12):5299-311. PubMed ID: 21355039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overexpression of O-methyltransferase leads to improved vanillin production in baker's yeast only when complemented with model-guided network engineering.
    Brochado AR; Patil KR
    Biotechnol Bioeng; 2013 Feb; 110(2):656-9. PubMed ID: 23007522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthetic Transcription Amplifier System for Orthogonal Control of Gene Expression in Saccharomyces cerevisiae.
    Rantasalo A; Czeizler E; Virtanen R; Rousu J; Lähdesmäki H; Penttilä M; Jäntti J; Mojzita D
    PLoS One; 2016; 11(2):e0148320. PubMed ID: 26901642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae.
    Kim JH; Brachet V; Moriya H; Johnston M
    Eukaryot Cell; 2006 Jan; 5(1):167-73. PubMed ID: 16400179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of modular "plug-and-play" expression platforms derived from natural riboswitches for engineering novel genetically encodable RNA regulatory devices.
    Trausch JJ; Batey RT
    Methods Enzymol; 2015; 550():41-71. PubMed ID: 25605380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design criteria for synthetic riboswitches acting on transcription.
    Wachsmuth M; Domin G; Lorenz R; Serfling R; Findeiß S; Stadler PF; Mörl M
    RNA Biol; 2015; 12(2):221-31. PubMed ID: 25826571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimal in silico target gene deletion through nonlinear programming for genetic engineering.
    Hong CC; Song M
    PLoS One; 2010 Feb; 5(2):e9331. PubMed ID: 20195367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering a riboswitch-based genetic platform for the self-directed evolution of acid-tolerant phenotypes.
    Pham HL; Wong A; Chua N; Teo WS; Yew WS; Chang MW
    Nat Commun; 2017 Sep; 8(1):411. PubMed ID: 28871084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction with the SH3 domain protein Bem1 regulates signaling by the Saccharomyces cerevisiae p21-activated kinase Ste20.
    Winters MJ; Pryciak PM
    Mol Cell Biol; 2005 Mar; 25(6):2177-90. PubMed ID: 15743816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Signal integration in budding yeast.
    Waltermann C; Klipp E
    Biochem Soc Trans; 2010 Oct; 38(5):1257-64. PubMed ID: 20863295
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae.
    Nevoigt E; Kohnke J; Fischer CR; Alper H; Stahl U; Stephanopoulos G
    Appl Environ Microbiol; 2006 Aug; 72(8):5266-73. PubMed ID: 16885275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plug-and-Play Multicellular Circuits with Time-Dependent Dynamic Responses.
    Urrios A; Gonzalez-Flo E; Canadell D; de Nadal E; Macia J; Posas F
    ACS Synth Biol; 2018 Apr; 7(4):1095-1104. PubMed ID: 29584406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aptazyme-based riboswitches and logic gates in mammalian cells.
    Nomura Y; Yokobayashi Y
    Methods Mol Biol; 2015; 1316():141-8. PubMed ID: 25967059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.
    Lee KS; Hong ME; Jung SC; Ha SJ; Yu BJ; Koo HM; Park SM; Seo JH; Kweon DH; Park JC; Jin YS
    Biotechnol Bioeng; 2011 Mar; 108(3):621-31. PubMed ID: 21246509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae.
    Farkas IJ; Wu C; Chennubhotla C; Bahar I; Oltvai ZN
    BMC Bioinformatics; 2006 Oct; 7():478. PubMed ID: 17069658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gγ recruitment system incorporating a novel signal amplification circuit to screen transient protein-protein interactions.
    Fukuda N; Ishii J; Kondo A
    FEBS J; 2011 Sep; 278(17):3086-94. PubMed ID: 21740518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Programmable ligand-controlled riboregulators of eukaryotic gene expression.
    Bayer TS; Smolke CD
    Nat Biotechnol; 2005 Mar; 23(3):337-43. PubMed ID: 15723047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sla1p serves as the targeting signal recognition factor for NPFX(1,2)D-mediated endocytosis.
    Howard JP; Hutton JL; Olson JM; Payne GS
    J Cell Biol; 2002 Apr; 157(2):315-26. PubMed ID: 11940605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineered Saccharomyces cerevisiae strain BioS-OS1/2, for the detection of oxidative stress.
    Jayaraman M; Radhika V; Bamne MN; Ramos R; Briggs R; Dhanasekaran DN
    Biotechnol Prog; 2005; 21(5):1373-9. PubMed ID: 16209540
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana.
    Chen MT; Weiss R
    Nat Biotechnol; 2005 Dec; 23(12):1551-5. PubMed ID: 16299520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.