These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 27138273)

  • 41. Single-Finger Neural Basis Information-Based Neural Decoder for Multi-Finger Movements.
    Choi H; You KJ; Thakor NV; Schieber MH; Shin HC
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2240-2248. PubMed ID: 30334763
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data.
    Saa JF; Çetin M
    J Neural Eng; 2012 Apr; 9(2):026020. PubMed ID: 22414728
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An online brain-machine interface using decoding of movement direction from the human electrocorticogram.
    Milekovic T; Fischer J; Pistohl T; Ruescher J; Schulze-Bonhage A; Aertsen A; Rickert J; Ball T; Mehring C
    J Neural Eng; 2012 Aug; 9(4):046003. PubMed ID: 22713666
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effects of spatial filtering and artifacts on electrocorticographic signals.
    Liu Y; Coon WG; de Pesters A; Brunner P; Schalk G
    J Neural Eng; 2015 Oct; 12(5):056008. PubMed ID: 26268446
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Decoding grasp force profile from electrocorticography signals in non-human primate sensorimotor cortex.
    Chen C; Shin D; Watanabe H; Nakanishi Y; Kambara H; Yoshimura N; Nambu A; Isa T; Nishimura Y; Koike Y
    Neurosci Res; 2014 Jun; 83():1-7. PubMed ID: 24726922
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Primary motor area activation during precision-demanding versus simple finger movement.
    Carey JR; Greer KR; Grunewald TK; Steele JL; Wiemiller JW; Bhatt E; Nagpal A; Lungu O; Auerbach EJ
    Neurorehabil Neural Repair; 2006 Sep; 20(3):361-70. PubMed ID: 16885422
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals.
    Kim JH; Bießmann F; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):867-76. PubMed ID: 25474811
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Detection of error related neuronal responses recorded by electrocorticography in humans during continuous movements.
    Milekovic T; Ball T; Schulze-Bonhage A; Aertsen A; Mehring C
    PLoS One; 2013; 8(2):e55235. PubMed ID: 23383315
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Classification of movement intention by spatially filtered electromagnetic inverse solutions.
    Congedo M; Lotte F; Lécuyer A
    Phys Med Biol; 2006 Apr; 51(8):1971-89. PubMed ID: 16585840
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Decoding flexion of individual fingers using electrocorticographic signals in humans.
    Kubánek J; Miller KJ; Ojemann JG; Wolpaw JR; Schalk G
    J Neural Eng; 2009 Dec; 6(6):066001. PubMed ID: 19794237
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Non-magnetic equipment for the high-resolution quantification of finger kinematics during functional studies of bimanual coordination.
    De Luca C; Bertollo M; Comani S
    J Neurosci Methods; 2010 Sep; 192(1):173-84. PubMed ID: 20670653
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A 128-Channel Extreme Learning Machine-Based Neural Decoder for Brain Machine Interfaces.
    Chen Y; Yao E; Basu A
    IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):679-92. PubMed ID: 26672048
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Finger movements are mainly represented by a linear transformation of energy in band-specific ECoG signals.
    Marjaninejad A; Taherian B; Valero-Cuevas FJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():986-989. PubMed ID: 29060039
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimizing the Detection of Wakeful and Sleep-Like States for Future Electrocorticographic Brain Computer Interface Applications.
    Pahwa M; Kusner M; Hacker CD; Bundy DT; Weinberger KQ; Leuthardt EC
    PLoS One; 2015; 10(11):e0142947. PubMed ID: 26562013
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neuroprosthetic limb control with electrocorticography: approaches and challenges.
    Thakor NV; Fifer MS; Hotson G; Benz HL; Newman GI; Milsap GW; Crone NE
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5212-5. PubMed ID: 25571168
    [TBL] [Abstract][Full Text] [Related]  

  • 56. How does the brain create rhythms?
    Szirmai I
    Ideggyogy Sz; 2010 Jan; 63(1-2):13-23. PubMed ID: 20420120
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Real-time control of a prosthetic hand using human electrocorticography signals.
    Yanagisawa T; Hirata M; Saitoh Y; Goto T; Kishima H; Fukuma R; Yokoi H; Kamitani Y; Yoshimine T
    J Neurosurg; 2011 Jun; 114(6):1715-22. PubMed ID: 21314273
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Instantaneous interactions between brain sites can distinguish movement from rest but are relatively poor at resolving different movement types.
    Miller KJ; Ojemann JG; Henderson JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5200-3. PubMed ID: 25571165
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The impact of loss of control on movement BCIs.
    Reuderink B; Poel M; Nijholt A
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):628-37. PubMed ID: 21984517
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Decoding of individuated finger movements using surface electromyography.
    Tenore FV; Ramos A; Fahmy A; Acharya S; Etienne-Cummings R; Thakor NV
    IEEE Trans Biomed Eng; 2009 May; 56(5):1427-34. PubMed ID: 19473933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.