These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27138527)

  • 1. Cation Tuning toward the Inference of the Gelation Behavior of Supramolecular Gels.
    Xue P; Wu H; Wang X; He T; Shen R; Yue F; Wang J; Zhang Y
    Sci Rep; 2016 May; 6():25390. PubMed ID: 27138527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gelation behaviour of a bent-core dihydrazide derivative: effect of incubation temperature in chloroform and toluene.
    Zhang C; Zhang T; Ji N; Zhang Y; Bai B; Wang H; Li M
    Soft Matter; 2016 Feb; 12(5):1525-33. PubMed ID: 26659559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoreversible as well as thermoirreversible organogel formation by L-cysteine-based amphiphiles with poly(ethylene glycol) tail.
    Ghosh S; Das Mahapatra R; Dey J
    Langmuir; 2014 Feb; 30(6):1677-85. PubMed ID: 24460010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ synthesis-gelation at room temperature vs. heating-cooling procedure. Fine tuning of molecular gels derived from succinic acid and L-valine.
    Fontanillo M; Angulo-Pachón CA; Escuder B; Miravet JF
    J Colloid Interface Sci; 2013 Dec; 412():65-71. PubMed ID: 24144375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Supramolecular Gel Formed by Cyclohexane Diamine with Aldehyde Derivative.
    Park JH; Kim MH; Seo ML; Lee JH; Jung JH
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small-angle neutron scattering study of structure and kinetics of temperature-induced protein gelation.
    Chodankar S; Aswal VK; Kohlbrecher J; Vavrin R; Wagh AG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021912. PubMed ID: 19391783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-Tuned and Metal-Ion-Responsive Supramolecular Gels Based on Nucleolipids.
    Nuthanakanti A; Srivatsan SG
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22864-22874. PubMed ID: 28614659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salt-induced gelation of globular protein aggregates: structure and kinetics.
    Ako K; Nicolai T; Durand D
    Biomacromolecules; 2010 Apr; 11(4):864-71. PubMed ID: 20297835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal gelation of chitosan in an aqueous alkali-urea solution.
    Li C; Han Q; Guan Y; Zhang Y
    Soft Matter; 2014 Nov; 10(41):8245-53. PubMed ID: 25182118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting molecular self-assembly: from urea-based organocatalysts to multifunctional supramolecular gels.
    Schön EM; Marqués-López E; Herrera RP; Alemán C; Díaz Díaz D
    Chemistry; 2014 Aug; 20(34):10720-31. PubMed ID: 24966127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent.
    Patel AR; Babaahmadi M; Lesaffer A; Dewettinck K
    J Agric Food Chem; 2015 May; 63(19):4862-9. PubMed ID: 25932656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Birefringent physical gels of N-(4-n-alkyloxybenzoyl)-L-alanine amphiphiles in organic solvents: the role of hydrogen-bonding.
    Patra T; Pal A; Dey J
    J Colloid Interface Sci; 2010 Apr; 344(1):10-20. PubMed ID: 20097349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse thermal organogelation of poly(ethylene glycol)-polypeptide diblock copolymers in chloroform.
    Choi YY; Jeong Y; Joo MK; Jeong B
    Macromol Biosci; 2009 Sep; 9(9):869-74. PubMed ID: 19384979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral bis(amino acid)- and bis(amino alcohol)-oxalamide gelators. Gelation properties, self-assembly motifs and chirality effects.
    Frkanec L; Zinić M
    Chem Commun (Camb); 2010 Jan; 46(4):522-37. PubMed ID: 20062853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organogels with complexes of ions and phosphorus-containing amphiphiles as gelators. Spontaneous gelation by in situ complexation.
    George M; Funkhouser GP; Weiss RG
    Langmuir; 2008 Apr; 24(7):3537-44. PubMed ID: 18278965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical characterization of network formation during heat-induced gelation of whey protein dispersions.
    Ikeda S; Nishinari K; Foegeding EA
    Biopolymers; 2000-2001; 56(2):109-19. PubMed ID: 11592057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of supramolecular organo-gel based on tripeptide skeletons.
    Azuma E; Kuramochi K; Tsubaki K
    Chem Pharm Bull (Tokyo); 2010 May; 58(5):680-4. PubMed ID: 20460796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monopyrrolotetrathiafulvalene-succinamide conjugates and their TCNQ charge transfer complex based supramolecular gels with multiple stimulus responsiveness.
    Liu Y; Zheng N; Chen T; Jin L; Yin B
    Org Biomol Chem; 2014 Sep; 12(35):6927-36. PubMed ID: 25069409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of esters of arjunolic acid into fibrous networks and the properties of their organogels.
    Bag BG; Dinda SK; Dey PP; Mallia VA; Weiss RG
    Langmuir; 2009 Aug; 25(15):8663-71. PubMed ID: 19391592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound-Induced Gelation of Organic Liquids by L-Cysteine-Derived Amphiphile Containing Poly(ethylene glycol) Tail.
    Das Mahapatra R; Dey J
    Langmuir; 2015 Aug; 31(31):8703-9. PubMed ID: 26181211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.