These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 27138558)

  • 41. Enhanced photoelectrochemical properties of nanocrystalline TiO
    Tao J; Sun Z; Cheng Y; Zhang M; Lv J; Shi S; He G; Jiang X; Chen X; Wang X; Wang Z; Gong Z
    Sci Rep; 2017 Jul; 7(1):5291. PubMed ID: 28706278
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Black 3D-TiO
    Meng M; Feng Y; Li C; Gan Z; Yuan H; Zhang H
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564156
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture.
    Chang JY; Lin JM; Su LF; Chang CF
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8740-52. PubMed ID: 23937511
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films.
    Cordova IA; Peng Q; Ferrall IL; Rieth AJ; Hoertz PG; Glass JT
    Nanoscale; 2015 May; 7(18):8584-92. PubMed ID: 25899449
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays.
    Tao L; Xiong Y; Liu H; Shen W
    Nanoscale; 2014 Jan; 6(2):931-8. PubMed ID: 24281658
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CuInS2 quantum dot-sensitized TiO2 nanorod array photoelectrodes: synthesis and performance optimization.
    Zhou Z; Yuan S; Fan J; Hou Z; Zhou W; Du Z; Wu S
    Nanoscale Res Lett; 2012 Nov; 7(1):652. PubMed ID: 23181940
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays.
    Li Y; Wei L; Chen X; Zhang R; Sui X; Chen Y; Jiao J; Mei L
    Nanoscale Res Lett; 2013 Feb; 8(1):67. PubMed ID: 23394609
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Construction of WO
    Zhang N; Li H; Yao B; Liu S; Ren J; Wang Y; Fang Z; Wu R; Wei S
    Dalton Trans; 2023 May; 52(19):6284-6289. PubMed ID: 37083108
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced photoelectrochemical water splitting performance of TiO2 nanotube arrays coated with an ultrathin nitrogen-doped carbon film by molecular layer deposition.
    Tong X; Yang P; Wang Y; Qin Y; Guo X
    Nanoscale; 2014 Jun; 6(12):6692-700. PubMed ID: 24816496
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution.
    Lian Z; Wang W; Xiao S; Li X; Cui Y; Zhang D; Li G; Li H
    Sci Rep; 2015 Jun; 5():10461. PubMed ID: 26067850
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D periodic multiscale TiO₂ architecture: a platform decorated with graphene quantum dots for enhanced photoelectrochemical water splitting.
    Xu Z; Yin M; Sun J; Ding G; Lu L; Chang P; Chen X; Li D
    Nanotechnology; 2016 Mar; 27(11):115401. PubMed ID: 26870990
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recombination control in high-performance quantum dot-sensitized solar cells with a novel TiO2/ZnS/CdS/ZnS heterostructure.
    Lee YS; Gopi CV; Venkata-Haritha M; Kim HJ
    Dalton Trans; 2016 Aug; 45(32):12914-23. PubMed ID: 27477125
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Promoted photoelectrocatalytic hydrogen evolution of a type II structure via an Al
    Wang Y; Bai W; Wang H; Jiang Y; Han S; Sun H; Li Y; Jiang G; Zhao Z; Huan Q
    Dalton Trans; 2017 Aug; 46(32):10734-10741. PubMed ID: 28766663
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assembling γ-graphyne surrounding TiO
    Qiu D; He C; Lu Y; Li Q; Chen Y; Cui X
    Dalton Trans; 2021 Nov; 50(42):15422-15432. PubMed ID: 34661591
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simple Fabrication of SnO
    Zhang Y; Lin Q; Tong N; Zhang Z; Zhuang H; Zhang X; Ying W; Zhang H; Wang X
    Chemphyschem; 2018 Oct; 19(20):2717-2723. PubMed ID: 30088324
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Performance Photoelectrochemical Water Splitting.
    Vahidzadeh E; Zeng S; Alam KM; Kumar P; Riddell S; Chaulagain N; Gusarov S; Kobryn AE; Shankar K
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42741-42752. PubMed ID: 34476945
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plasmon-Sensitized Graphene/TiO
    Boppella R; Kochuveedu ST; Kim H; Jeong MJ; Marques Mota F; Park JH; Kim DH
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7075-7083. PubMed ID: 28170225
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating.
    Hwang YJ; Hahn C; Liu B; Yang P
    ACS Nano; 2012 Jun; 6(6):5060-9. PubMed ID: 22621345
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient photoelectrochemical water-splitting over carbon membrane linked Au and TiO
    Zhang X; Xue P; Jia J; Hu X; Fan J; Liu E
    Nanotechnology; 2019 Oct; 30(43):435403. PubMed ID: 31342936
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays.
    Yin Y; Jin Z; Hou F
    Nanotechnology; 2007 Dec; 18(49):495608. PubMed ID: 20442481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.