These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27139339)

  • 1. Subdermal Flexible Solar Cell Arrays for Powering Medical Electronic Implants.
    Song K; Han JH; Lim T; Kim N; Shin S; Kim J; Choo H; Jeong S; Kim YC; Wang ZL; Lee J
    Adv Healthc Mater; 2016 Jul; 5(13):1572-80. PubMed ID: 27139339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of electrical power under human skin by subdermal solar cell arrays for implantable bioelectronic devices.
    Song K; Han JH; Yang HC; Nam KI; Lee J
    Biosens Bioelectron; 2017 Jun; 92():364-371. PubMed ID: 27836601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential of subdermal solar energy harvesting for medical device applications based on worldwide meteorological data.
    Tholl MV; Zurbuchen A; Tanner H; Haeberlin A
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33694336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy Harvesting by Subcutaneous Solar Cells: A Long-Term Study on Achievable Energy Output.
    Bereuter L; Williner S; Pianezzi F; Bissig B; Buecheler S; Burger J; Vogel R; Zurbuchen A; Haeberlin A
    Ann Biomed Eng; 2017 May; 45(5):1172-1180. PubMed ID: 28050727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first batteryless, solar-powered cardiac pacemaker.
    Haeberlin A; Zurbuchen A; Walpen S; Schaerer J; Niederhauser T; Huber C; Tanner H; Servatius H; Seiler J; Haeberlin H; Fuhrer J; Vogel R
    Heart Rhythm; 2015 Jun; 12(6):1317-23. PubMed ID: 25744612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Successful pacing using a batteryless sunlight-powered pacemaker.
    Haeberlin A; Zurbuchen A; Schaerer J; Wagner J; Walpen S; Huber C; Haeberlin H; Fuhrer J; Vogel R
    Europace; 2014 Oct; 16(10):1534-9. PubMed ID: 24916431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcutaneous Solar Energy Harvesting for Self-Powered Wireless Implantable Sensor Systems.
    Wu T; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4657-4660. PubMed ID: 30441389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An implantable power supply with an optically rechargeable lithium battery.
    Goto K; Nakagawa T; Nakamura O; Kawata S
    IEEE Trans Biomed Eng; 2001 Jul; 48(7):830-3. PubMed ID: 11442295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Powering a Real Cardiac Pacemaker by Natural Energy of a Heartbeat.
    Li N; Yi Z; Ma Y; Xie F; Huang Y; Tian Y; Dong X; Liu Y; Shao X; Li Y; Jin L; Liu J; Xu Z; Yang B; Zhang H
    ACS Nano; 2019 Mar; 13(3):2822-2830. PubMed ID: 30784259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.
    Meng C; Gall OZ; Irazoqui PP
    Biomed Microdevices; 2013 Dec; 15(6):973-83. PubMed ID: 23832644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance flexible energy storage and harvesting system for wearable electronics.
    Ostfeld AE; Gaikwad AM; Khan Y; Arias AC
    Sci Rep; 2016 May; 6():26122. PubMed ID: 27184194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active photonic wireless power transfer into live tissues.
    Kim J; Seo J; Jung D; Lee T; Ju H; Han J; Kim N; Jeong J; Cho S; Seol JH; Lee J
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):16856-16863. PubMed ID: 32632002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A photovoltaic-driven and energy-autonomous CMOS implantable sensor.
    Ayazian S; Akhavan VA; Soenen E; Hassibi A
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):336-43. PubMed ID: 23853178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-flexible Piezoelectric Devices Integrated with Heart to Harvest the Biomechanical Energy.
    Lu B; Chen Y; Ou D; Chen H; Diao L; Zhang W; Zheng J; Ma W; Sun L; Feng X
    Sci Rep; 2015 Nov; 5():16065. PubMed ID: 26538375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible-Device Injector with a Microflap Array for Subcutaneously Implanting Flexible Medical Electronics.
    Song K; Kim J; Cho S; Kim N; Jung D; Choo H; Lee J
    Adv Healthc Mater; 2018 Aug; 7(15):e1800419. PubMed ID: 29938924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.
    Yang Y; Zhang H; Zhu G; Lee S; Lin ZH; Wang ZL
    ACS Nano; 2013 Jan; 7(1):785-90. PubMed ID: 23199138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainably Powered, Multifunctional Flexible Feedback Implant by the Bifacial Design and Si Photovoltaics.
    Jung D; Song K; Ju H; Park H; Han JH; Kim N; Kim J; Lee J
    Adv Healthc Mater; 2021 Feb; 10(3):e2001480. PubMed ID: 33200555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.
    Sahara G; Hijikata W; Tomioka K; Shinshi T
    Proc Inst Mech Eng H; 2016 Jun; 230(6):569-78. PubMed ID: 27006422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance large-scale flexible dye-sensitized solar cells based on anodic TiO2 nanotube arrays.
    Jen HP; Lin MH; Li LL; Wu HP; Huang WK; Cheng PJ; Diau EW
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10098-104. PubMed ID: 24050628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless power transfer for a pacemaker application.
    Vulfin V; Sayfan-Altman S; Ianconescu R
    J Med Eng Technol; 2017 May; 41(4):325-332. PubMed ID: 28301285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.