These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27139646)

  • 21. Using Schlieren Imaging and a Radar Acoustic Sounding System for the Detection of Close-in Air Turbulence.
    Gordon S; Brooker G
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837085
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acousto-optic interaction with the use of cylindrical ultrasonic waves in the laser cavity.
    Grulkowski I; Jankowski D; Kwiek P
    Appl Opt; 2009 Mar; 48(7):C81-5. PubMed ID: 19252620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Focusing of longitudinal ultrasonic waves in air with an aperiodic flat lens.
    Welter JT; Sathish S; Christensen DE; Brodrick PG; Heebl JD; Cherry MR
    J Acoust Soc Am; 2011 Nov; 130(5):2789-96. PubMed ID: 22087907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New dimension in the schlieren technique: flow field analysis using color.
    Maddox AR; Binder RC
    Appl Opt; 1971 Mar; 10(3):474-81. PubMed ID: 20094475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative Fourier analysis of schlieren masks: the transition from shadowgraph to schlieren.
    Croccolo F; Brogioli D
    Appl Opt; 2011 Jul; 50(20):3419-27. PubMed ID: 21743548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lens-focused transducer modeling using an extended KLM model.
    Maréchal P; Levassort F; Tran-Huu-Hue LP; Lethiecq M
    Ultrasonics; 2007 May; 46(2):155-67. PubMed ID: 17382986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acousto-optic interaction in a non-homogeneous acoustic field excited by a wedge-shaped transducer.
    Balakshy VI; Linde BB; Vostrikova AN
    Ultrasonics; 2008 Sep; 48(5):351-6. PubMed ID: 18291434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Schlieren visualization of ultrasonic standing waves in mm-sized chambers for ultrasonic particle manipulation.
    Möller D; Degen N; Dual J
    J Nanobiotechnology; 2013 Jun; 11():21. PubMed ID: 23842114
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental measurement of the acousto-electric interaction signal in saline solution.
    Lavandier B; Jossinet J; Cathignol D
    Ultrasonics; 2000 Sep; 38(9):929-36. PubMed ID: 11012016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolvable Acoustic Field Generated by a Transducer with 3D-Printed Fresnel Lens.
    Wang D; Lin P; Chen Z; Fei C; Qiu Z; Chen Q; Sun X; Wu Y; Sun L
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832726
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Simple Technique for Visualizing Ultrasound Fields Without Schlieren Optics.
    Kudo N
    Ultrasound Med Biol; 2015 Jul; 41(7):2071-81. PubMed ID: 25842256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation.
    Younan Y; Deffieux T; Larrat B; Fink M; Tanter M; Aubry JF
    Med Phys; 2013 Aug; 40(8):082902. PubMed ID: 23927357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy.
    Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G
    Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Schlieren visualization of ultrasonic wave fields with high spatial resolution.
    Neumann T; Ermert H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1561-6. PubMed ID: 16815508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature-dependent schlieren effect in liquid flow for chemical analysis.
    Suwanrut J; Chantipmanee N; Kamsong W; Buking S; Mantim T; Saetear P; Nacapricha D
    Talanta; 2018 Oct; 188():74-80. PubMed ID: 30029441
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental demonstration of Fresnel zone plate lens for robust subwavelength focusing at mega hertz.
    Pan X; Zeng L; Li Y; Zhu X; Jin Y
    Ultrasonics; 2023 Feb; 128():106876. PubMed ID: 36272298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of spark-generated N-waves in air using an optical schlieren method.
    Karzova MM; Yuldashev PV; Khokhlova VA; Ollivier S; Salze E; Blanc-Benon P
    J Acoust Soc Am; 2015 Jun; 137(6):3244-52. PubMed ID: 26093414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new focusing ultrasonic transducer and two foci acoustic lens for acoustic microscopy.
    Maslov KI; Dorozhkin LM; Doroshenko VS; Maev RG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):380-5. PubMed ID: 18244135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.
    Guo M; Abbott D; Lu M; Liu H
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):187-97. PubMed ID: 26768475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adjusting single-axis acoustic levitators in real time using rainbow schlieren deflectometry.
    Contreras V; Marzo A
    Rev Sci Instrum; 2021 Jan; 92(1):015107. PubMed ID: 33514194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.