These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 27139690)

  • 1. Reconstruction of a conic-section surface from autocollimator-based deflectometric profilometry.
    Thompson SJ; Lang R; Rees P; Roberts GW
    Appl Opt; 2016 Apr; 55(10):2827-36. PubMed ID: 27139690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aperture alignment in autocollimator-based deflectometric profilometers.
    Geckeler RD; Artemiev NA; Barber SK; Just A; Lacey I; Kranz O; Smith BV; Yashchuk VV
    Rev Sci Instrum; 2016 May; 87(5):051906. PubMed ID: 27250378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, fabrication, and verification of a three-dimensional autocollimator.
    Yin Y; Cai S; Qiao Y
    Appl Opt; 2016 Dec; 55(35):9986-9991. PubMed ID: 27958401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-degree-of-freedom autocollimator based on a combined target reflector.
    Guo Y; Cheng H; Wen Y; Feng Y
    Appl Opt; 2020 Mar; 59(8):2262-2269. PubMed ID: 32225756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roll angle autocollimator measurement method based on a cylindrical cube-corner reflector with a high resolution and large range.
    Li R; Xie L; Zhen Y; Xiao H; Wang W; Guo J; Konyakhin I; Nikitin M; Yu X
    Opt Express; 2022 Feb; 30(5):7147-7161. PubMed ID: 35299484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of the size and shape of the scanning aperture in autocollimator-based deflectometric profilometers.
    Lacey I; Geckler RD; Just A; Siewert F; Arnold T; Paetzelt H; Smith BV; Yashchuk VV
    Rev Sci Instrum; 2019 Feb; 90(2):021717. PubMed ID: 30831748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New type of autocollimator based on the normal tracing method and Risley prisms.
    Peng C; Gong H; Gao Z; Wang G; Liang X; He Y; Dong X; Wang J
    Appl Opt; 2021 Nov; 60(32):10114-10119. PubMed ID: 34807117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reference-beam autocollimator with nanoradian sensitivity from mHz to kHz and dynamic range of 10(7).
    Arp TB; Hagedorn CA; Schlamminger S; Gundlach JH
    Rev Sci Instrum; 2013 Sep; 84(9):095007. PubMed ID: 24089858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repeatability analysis of one-dimensional angular-measurement-based stitching interferometry.
    Huang L; Nicolas J; Idir M
    Opt Express; 2018 Aug; 26(16):20192-20202. PubMed ID: 30119333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A review of mathematical descriptors of corneal asphericity].
    Gatinel D; Haouat M; Hoang-Xuan T
    J Fr Ophtalmol; 2002 Jan; 25(1):81-90. PubMed ID: 11965125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional small angle measurement system based on autocollimation method.
    Ren W; Cui J; Tan J
    Rev Sci Instrum; 2022 May; 93(5):055102. PubMed ID: 35649758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental influences on autocollimator-based angle and form metrology.
    Geckeler RD; Křen P; Just A; Schumann M; Krause M; Lacey I; Yashchuk VV
    Rev Sci Instrum; 2019 Feb; 90(2):021705. PubMed ID: 30831764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical frequency domain angle measurement in a femtosecond laser autocollimator.
    Chen YL; Shimizu Y; Tamada J; Kudo Y; Madokoro S; Nakamura K; Gao W
    Opt Express; 2017 Jul; 25(14):16725-16738. PubMed ID: 28789174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpolating moving least-squares methods for fitting potential energy surfaces: a strategy for efficient automatic data point placement in high dimensions.
    Dawes R; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2008 Feb; 128(8):084107. PubMed ID: 18315033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncertainties in Small-Angle Measurement Systems Used to Calibrate Angle Artifacts.
    Stone JA; Amer M; Faust B; Zimmerman J
    J Res Natl Inst Stand Technol; 2004; 109(3):319-33. PubMed ID: 27366616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deflectometric method for surface shape reconstruction from its gradient.
    Miks A; Novak J
    Opt Express; 2012 Dec; 20(27):28341-6. PubMed ID: 23263068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of z-axis resolution and image noise for nonconstant velocity spiral CT data reconstructed using a weighted 3D filtered backprojection (WFBP) reconstruction algorithm.
    Christner JA; Stierstorfer K; Primak AN; Eusemann CD; Flohr TG; McCollough CH
    Med Phys; 2010 Feb; 37(2):897-906. PubMed ID: 20229899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT.
    Park JC; Song B; Kim JS; Park SH; Kim HK; Liu Z; Suh TS; Song WY
    Med Phys; 2012 Mar; 39(3):1207-17. PubMed ID: 22380351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-mirror beam steering system: analysis and synthesis of high-order conic-section scan patterns.
    Li Y
    Appl Opt; 2008 Jan; 47(3):386-98. PubMed ID: 18204726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated correction of improperly rotated diffusion gradient orientations in diffusion weighted MRI.
    Jeurissen B; Leemans A; Sijbers J
    Med Image Anal; 2014 Oct; 18(7):953-62. PubMed ID: 24968247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.