These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 27139857)

  • 1. Absorption enhancement in graphene photonic crystal structures.
    Khaleque A; Hattori HT
    Appl Opt; 2016 Apr; 55(11):2936-42. PubMed ID: 27139857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene-based photonic devices for soft hybrid optoelectronic systems.
    Kim JT; Kim J; Choi H; Choi CG; Choi SY
    Nanotechnology; 2012 Aug; 23(34):344005. PubMed ID: 22885955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental near infrared absorption enhancement of graphene layers in an optical resonant cavity.
    Nematpour A; Lisi N; Piegari A; Lancellotti L; Hu G; Grilli ML
    Nanotechnology; 2019 Nov; 30(44):445201. PubMed ID: 31341097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs.
    Williamson IA; Mousavi SH; Wang Z
    Sci Rep; 2016 May; 6():25301. PubMed ID: 27143314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer matrix optimization of a one-dimensional photonic crystal cavity for enhanced absorption of monolayer graphene.
    Sarkar S; Padhy A; Nayak C
    Appl Opt; 2022 Oct; 61(29):8613-8623. PubMed ID: 36255993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons.
    Lu H; Gan X; Jia B; Mao D; Zhao J
    Opt Lett; 2016 Oct; 41(20):4743-4746. PubMed ID: 28005882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angle-selective perfect absorption with two-dimensional materials.
    Zhu L; Liu F; Lin H; Hu J; Yu Z; Wang X; Fan S
    Light Sci Appl; 2016 Mar; 5(3):e16052. PubMed ID: 30167153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene and its derivatives: switching ON and OFF.
    Chen Y; Zhang B; Liu G; Zhuang X; Kang ET
    Chem Soc Rev; 2012 Jul; 41(13):4688-707. PubMed ID: 22648376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Efficient Light Absorption of Monolayer Graphene by Quasi-Bound State in the Continuum.
    Sang T; Dereshgi SA; Hadibrata W; Tanriover I; Aydin K
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33672919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure.
    Zhou J; Yan S; Li C; Zhu J; Liu QH
    Opt Express; 2018 Jul; 26(14):18155-18163. PubMed ID: 30114095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene.
    Yi S; Zhou M; Shi X; Gan Q; Zi J; Yu Z
    Opt Express; 2015 Apr; 23(8):10081-90. PubMed ID: 25969049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications.
    Guo C; Zhang J; Xu W; Liu K; Yuan X; Qin S; Zhu Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization-independent absorption enhancement in a graphene square array with a cascaded grating structure.
    Wu J
    J Synchrotron Radiat; 2018 Mar; 25(Pt 2):419-424. PubMed ID: 29488921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active control of all-fibre graphene devices with electrical gating.
    Lee EJ; Choi SY; Jeong H; Park NH; Yim W; Kim MH; Park JK; Son S; Bae S; Kim SJ; Lee K; Ahn YH; Ahn KJ; Hong BH; Park JY; Rotermund F; Yeom DI
    Nat Commun; 2015 Apr; 6():6851. PubMed ID: 25897687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the absorption of a plasmonic absorber using a single layer of graphene at telecommunication wavelengths.
    Zare MS; Nozhat N; Rashiditabar R
    Appl Opt; 2016 Dec; 55(34):9764-9768. PubMed ID: 27958468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Industrial graphene metrology.
    Kyle JR; Ozkan CS; Ozkan M
    Nanoscale; 2012 Jul; 4(13):3807-19. PubMed ID: 22538861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of unconventional edge states in 'photonic graphene'.
    Plotnik Y; Rechtsman MC; Song D; Heinrich M; Zeuner JM; Nolte S; Lumer Y; Malkova N; Xu J; Szameit A; Chen Z; Segev M
    Nat Mater; 2014 Jan; 13(1):57-62. PubMed ID: 24193661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.
    Tanaka Y; Kawamoto Y; Fujita M; Noda S
    Opt Express; 2013 Aug; 21(17):20111-8. PubMed ID: 24105557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable light absorption of graphene using topological interface states.
    Lin YC; Chou SH; Hsueh WJ
    Opt Lett; 2020 Aug; 45(16):4369-4372. PubMed ID: 32796960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity.
    Gan X; Mak KF; Gao Y; You Y; Hatami F; Hone J; Heinz TF; Englund D
    Nano Lett; 2012 Nov; 12(11):5626-31. PubMed ID: 23043452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.