These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27140151)

  • 1. Temperature-driven directional coalescence of silver nanoparticles.
    Yan S; Sun D; Gong Y; Tan Y; Xing X; Mo G; Chen Z; Cai Q; Li Z; Yu H; Wu Z
    J Synchrotron Radiat; 2016 May; 23(Pt 3):718-28. PubMed ID: 27140151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Approach to Enhance High Temperature Thermal Stability of Superparamagnetic Fe₃O₄ Nanoparticles.
    Anushree C; Philip J
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5624-5632. PubMed ID: 30961717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An
    Garcia PRAF; Prymak O; Grasmik V; Pappert K; Wlysses W; Otubo L; Epple M; Oliveira CLP
    Nanoscale Adv; 2020 Jan; 2(1):225-238. PubMed ID: 36133991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limited grain growth and chemical ordering during high-temperature sintering of PtNiCo nanoparticle aggregates.
    Mukundan V; Wanjala BN; Loukrakpam R; Luo J; Yin J; Zhong CJ; Malis O
    Nanotechnology; 2012 Aug; 23(33):335705. PubMed ID: 22863867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple synthesis and size-dependent surface-enhanced Raman scattering of Ag nanostructures on TiO2 by thermal decomposition of silver nitrate at low temperature.
    Wang RC; Gao YS; Chen SJ
    Nanotechnology; 2009 Sep; 20(37):375605. PubMed ID: 19706939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of colloidal silver nanoparticles trapped in lipid bilayer: effect of lecithin concentration and applied temperature.
    Barani H; Montazer M; Braun HG; Dutschk V
    IET Nanobiotechnol; 2014 Dec; 8(4):282-9. PubMed ID: 25429509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox decomposition of silver citrate complex in nanoscale confinement: an unusual mechanism of formation and growth of silver nanoparticles.
    Patra S; Pandey AK; Sen D; Ramagiri SV; Bellare JR; Mazumder S; Goswami A
    Langmuir; 2014 Mar; 30(9):2460-9. PubMed ID: 24533743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver nanoparticle formation in microemulsions acting both as template and reducing agent.
    Andersson M; Pedersen JS; Palmqvist AE
    Langmuir; 2005 Nov; 21(24):11387-96. PubMed ID: 16285815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect of PVP and PEG on the behavior of silver nanoparticle-polymer composites.
    Dhakal TR; Mishra SR; Glenn Z; Rai BK
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6389-96. PubMed ID: 22962754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-controlled nanocrystals reveal spatial dependence and severity of nanoparticle coalescence and Ostwald ripening in sintering phenomena.
    Goodman ED; Carlson EZ; Dietze EM; Tahsini N; Johnson A; Aitbekova A; Nguyen Taylor T; Plessow PN; Cargnello M
    Nanoscale; 2021 Jan; 13(2):930-938. PubMed ID: 33367382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ observation of the thermally induced growth of platinum-nanoparticle catalysts using high-temperature X-ray diffraction.
    Hasché F; Oezaslan M; Strasser P
    Chemphyschem; 2012 Feb; 13(3):828-34. PubMed ID: 22287294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and spectroscopic characterization of prepared Ag2S nanoparticles with a novel sulfuring agent.
    Shakouri-Arani M; Salavati-Niasari M
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():463-71. PubMed ID: 24973787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coenzyme based synthesis of silver nanocrystals.
    Tanvir S; Oudet F; Pulvin S; Anderson WA
    Enzyme Microb Technol; 2012 Sep; 51(4):231-6. PubMed ID: 22883558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward monodispersed silver nanoparticles with unusual thermal stability.
    Sun J; Ma D; Zhang H; Liu X; Han X; Bao X; Weinberg G; Pfänder N; Su D
    J Am Chem Soc; 2006 Dec; 128(49):15756-64. PubMed ID: 17147385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films.
    Majeed Khan MA; Kumar S; Ahamed M; Alrokayan SA; Alsalhi MS
    Nanoscale Res Lett; 2011 Jun; 6(1):434. PubMed ID: 21711498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method.
    Gorup LF; Longo E; Leite ER; Camargo ER
    J Colloid Interface Sci; 2011 Aug; 360(2):355-8. PubMed ID: 21616500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ transmission electron microscopy observations of sublimation in silver nanoparticles.
    Asoro MA; Kovar D; Ferreira PJ
    ACS Nano; 2013 Sep; 7(9):7844-52. PubMed ID: 23941466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids.
    Dubey SP; Lahtinen M; Särkkä H; Sillanpää M
    Colloids Surf B Biointerfaces; 2010 Oct; 80(1):26-33. PubMed ID: 20620889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature.
    Sadeghi B; Gholamhoseinpoor F
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():310-5. PubMed ID: 25022503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.