These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27140292)

  • 1. In situ scanning tunneling microscopy studies of the SEI formation on graphite electrodes for Li(+)-ion batteries.
    Seidl L; Martens S; Ma J; Stimming U; Schneider O
    Nanoscale; 2016 Aug; 8(29):14004-14. PubMed ID: 27140292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: an in situ ECSTM investigation.
    Wang L; Deng X; Dai PX; Guo YG; Wang D; Wan LJ
    Phys Chem Chem Phys; 2012 May; 14(20):7330-6. PubMed ID: 22526455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-electrolyte interphase nucleation and growth on carbonaceous negative electrodes for Li-ion batteries visualized with in situ atomic force microscopy.
    Luchkin SY; Lipovskikh SA; Katorova NS; Savina AA; Abakumov AM; Stevenson KJ
    Sci Rep; 2020 May; 10(1):8550. PubMed ID: 32444787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Operando Electrochemical Atomic Force Microscopy of Solid-Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties.
    Zhang Z; Smith K; Jervis R; Shearing PR; Miller TS; Brett DJL
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35132-35141. PubMed ID: 32657567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid Electrolyte Interphase (SEI) at TiO
    Ventosa E; Madej E; Zampardi G; Mei B; Weide P; Antoni H; La Mantia F; Muhler M; Schuhmann W
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):3123-3130. PubMed ID: 28036171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-terminating, heterogeneous solid-electrolyte interphase enables reversible Li-ether cointercalation in graphite anodes.
    Xia D; Jeong H; Hou D; Tao L; Li T; Knight K; Hu A; Kamphaus EP; Nordlund D; Sainio S; Liu Y; Morris JR; Xu W; Huang H; Li L; Xiong H; Cheng L; Lin F
    Proc Natl Acad Sci U S A; 2024 Jan; 121(5):e2313096121. PubMed ID: 38261613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ quantification of interphasial chemistry in Li-ion battery.
    Liu T; Lin L; Bi X; Tian L; Yang K; Liu J; Li M; Chen Z; Lu J; Amine K; Xu K; Pan F
    Nat Nanotechnol; 2019 Jan; 14(1):50-56. PubMed ID: 30420761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structural study of solid electrolyte interface on negative electrode of lithium-Ion battery by electron microscopy.
    Matsushita T; Watanabe J; Nakao T; Yamashita S
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i21. PubMed ID: 25359815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of surface oxides in the formation of solid-electrolyte interphases at silicon electrodes for lithium-ion batteries.
    Schroder KW; Dylla AG; Harris SJ; Webb LJ; Stevenson KJ
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21510-24. PubMed ID: 25402271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and Li
    Boyer MJ; Vilčiauskas L; Hwang GS
    Phys Chem Chem Phys; 2016 Oct; 18(40):27868-27876. PubMed ID: 27711674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparison of Solid Electrolyte Interphase Formation and Evolution on Highly Oriented Pyrolytic and Disordered Graphite Negative Electrodes in Lithium-Ion Batteries.
    Zhu H; Russell JA; Fang Z; Barnes P; Li L; Efaw C; Muenzer A; May J; Hamal K; Cheng IF; Davis PH; Dufek E; Xiong H
    Small; 2021 Dec; 17(52):e2105292. PubMed ID: 34716757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure formation and surface chemistry of ionic liquids on model electrode surfaces-Model studies for the electrode
    Buchner F; Uhl B; Forster-Tonigold K; Bansmann J; Groß A; Behm RJ
    J Chem Phys; 2018 May; 148(19):193821. PubMed ID: 30307189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Potentiodynamic Analysis of the Electrolyte/Silicon Electrodes Interface Reactions--A Sum Frequency Generation Vibrational Spectroscopy Study.
    Horowitz Y; Han HL; Ross PN; Somorjai GA
    J Am Chem Soc; 2016 Jan; 138(3):726-9. PubMed ID: 26651259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Carbonate Solvents on Solid Electrolyte Interphase Composition over Si Electrodes Monitored by
    Wu ZY; Lu YQ; Li JT; Zanna S; Seyeux A; Huang L; Sun SG; Marcus P; Światowska J
    ACS Omega; 2021 Oct; 6(41):27335-27350. PubMed ID: 34693154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Li-Ion Battery SEI Compounds through (7)Li and (13)C Solid-State MAS NMR Spectroscopy and MALDI-TOF Mass Spectrometry.
    Huff LA; Tavassol H; Esbenshade JL; Xing W; Chiang YM; Gewirth AA
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):371-80. PubMed ID: 26653886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Observation of Interface Evolution on a Graphite Anode by Scanning Electrochemical Microscopy.
    Zeng X; Liu D; Wang S; Liu S; Cai X; Zhang L; Zhao R; Li B; Kang F
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37047-37053. PubMed ID: 32814414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multistage Mechanism of Lithium Intercalation into Graphite Anodes in the Presence of the Solid Electrolyte Interface.
    Dinkelacker F; Marzak P; Yun J; Liang Y; Bandarenka AS
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):14063-14069. PubMed ID: 29539259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designed Synergetic Effect of Electrolyte Additives to Improve Interfacial Chemistry of MCMB Electrode in Propylene Carbonate-Based Electrolyte for Enhanced Low and Room Temperature Performance.
    Wotango AS; Su WN; Haregewoin AM; Chen HM; Cheng JH; Lin MH; Wang CH; Hwang BJ
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25252-25262. PubMed ID: 29741362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries.
    Santner HJ; Korepp C; Winter M; Besenhard JO; Möller KC
    Anal Bioanal Chem; 2004 May; 379(2):266-71. PubMed ID: 14968287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the reversibility and kinetics of Li
    Gossage ZT; Hui J; Zeng Y; Flores-Zuleta H; Rodríguez-López J
    Chem Sci; 2019 Dec; 10(46):10749-10754. PubMed ID: 32055381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.