These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 27140348)

  • 1. Theory of plasmonic quantum-dot-based intermediate band solar cells.
    Foroutan S; Baghban H
    Appl Opt; 2016 May; 55(13):3405-12. PubMed ID: 27140348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of a GaSb/GaAs Quantum Dot Intermediate Band Solar Cell Operating at Maximum Power Point.
    Ramiro I; Villa J; Hwang J; Martin AJ; Millunchick J; Phillips J; Martí A
    Phys Rev Lett; 2020 Dec; 125(24):247703. PubMed ID: 33412043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Geometrical Shape on the Characteristics of the Multiple InN/In
    Aouami AE; Pérez LM; Feddi K; El-Yadri M; Dujardin F; Suazo MJ; Laroze D; Courel M; Feddi EM
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New strategies for colloidal-quantum-dot-based intermediate-band solar cells.
    Califano M; Skibinsky-Gitlin ES; Gómez-Campos FM; Rodríguez-Bolívar S
    J Chem Phys; 2019 Oct; 151(15):154101. PubMed ID: 31640383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution-processed intermediate-band solar cells with lead sulfide quantum dots and lead halide perovskites.
    Hosokawa H; Tamaki R; Sawada T; Okonogi A; Sato H; Ogomi Y; Hayase S; Okada Y; Yano T
    Nat Commun; 2019 Jan; 10(1):43. PubMed ID: 30626874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots.
    Prado SJ; Marques GE; Alcalde AM
    J Phys Condens Matter; 2017 Nov; 29(44):445301. PubMed ID: 28799524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance optimization of In(Ga)As quantum dot intermediate band solar cells.
    Yang G; Liu W; Bao Y; Chen X; Ji C; Wei B; Yang F; Wang X
    Discov Nano; 2023 Apr; 18(1):67. PubMed ID: 37382764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Observation of Two-Step Photon Absorption in an InAs/GaAs Single Quantum Dot for the Operation of Intermediate-Band Solar Cells.
    Nozawa T; Takagi H; Watanabe K; Arakawa Y
    Nano Lett; 2015 Jul; 15(7):4483-7. PubMed ID: 26099362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications.
    Sarkhoush M; Rasooli Saghai H; Soofi H
    Front Optoelectron; 2022 Oct; 15(1):42. PubMed ID: 36637679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells.
    Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guided-mode resonance gratings for enhanced mid-infrared absorption in quantum dot intermediate-band solar cells.
    Elsehrawy F; Niemi T; Cappelluti F
    Opt Express; 2018 Mar; 26(6):A352-A359. PubMed ID: 29609305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency Enhancement of PbS Quantum Dot/ZnO Nanowire Bulk-Heterojunction Solar Cells by Plasmonic Silver Nanocubes.
    Kawawaki T; Wang H; Kubo T; Saito K; Nakazaki J; Segawa H; Tatsuma T
    ACS Nano; 2015 Apr; 9(4):4165-72. PubMed ID: 25785476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lead-Sulfide-Selenide Quantum Dots and Gold-Copper Alloy Nanoparticles Augment the Light-Harvesting Ability of Solar Cells.
    Das A; Deepa M; Ghosal P
    Chemphyschem; 2017 Apr; 18(7):736-748. PubMed ID: 28070927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell.
    Martí A; Antolín E; Stanley CR; Farmer CD; López N; Díaz P; Cánovas E; Linares PG; Luque A
    Phys Rev Lett; 2006 Dec; 97(24):247701. PubMed ID: 17280325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell.
    Semonin OE; Luther JM; Choi S; Chen HY; Gao J; Nozik AJ; Beard MC
    Science; 2011 Dec; 334(6062):1530-3. PubMed ID: 22174246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature Dependence of Carrier Extraction Processes in GaSb/AlGaAs Quantum Nanostructure Intermediate-Band Solar Cells.
    Shoji Y; Tamaki R; Okada Y
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33573008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient two-step photocarrier generation in bias-controlled InAs/GaAs quantum dot superlattice intermediate-band solar cells.
    Kada T; Asahi S; Kaizu T; Harada Y; Tamaki R; Okada Y; Kita T
    Sci Rep; 2017 Jul; 7(1):5865. PubMed ID: 28724895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier.
    Wei G; Forrest SR
    Nano Lett; 2007 Jan; 7(1):218-22. PubMed ID: 17212467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermediate band solar cell with extreme broadband spectrum quantum efficiency.
    Datas A; López E; Ramiro I; Antolín E; Martí A; Luque A; Tamaki R; Shoji Y; Sogabe T; Okada Y
    Phys Rev Lett; 2015 Apr; 114(15):157701. PubMed ID: 25933339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide.
    Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC
    ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.