These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Closed-loop aberration correction by use of a modal Zernike wave-front sensor. Neil MA; Booth MJ; Wilson T Opt Lett; 2000 Aug; 25(15):1083-5. PubMed ID: 18064278 [TBL] [Abstract][Full Text] [Related]
5. Wavefront Characteristics of a Digital Holographic Optical Element. Lee BR; Marichal-Hernández JG; RodrÃguez-Ramos JM; Son WH; Hong S; Son JY Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374814 [TBL] [Abstract][Full Text] [Related]
7. Myopic aberrations: impact of centroiding noise in Hartmann Shack wavefront sensing. Akondi V; Vohnsen B Ophthalmic Physiol Opt; 2013 Jul; 33(4):434-43. PubMed ID: 23786384 [TBL] [Abstract][Full Text] [Related]
8. Response analysis of holography-based modal wavefront sensor. Dong S; Haist T; Osten W; Ruppel T; Sawodny O Appl Opt; 2012 Mar; 51(9):1318-27. PubMed ID: 22441478 [TBL] [Abstract][Full Text] [Related]
9. Improved linear response in a modal wavefront sensor. Konwar S; Boruah BR J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):741-750. PubMed ID: 31045000 [TBL] [Abstract][Full Text] [Related]
10. Analysis of a holographic laser adaptive optics system using a deformable mirror. Yao K; Wang J; Liu X; Lin X; Chen L Appl Opt; 2017 Aug; 56(23):6639-6648. PubMed ID: 29047956 [TBL] [Abstract][Full Text] [Related]
11. Deep learning wavefront sensing. Nishizaki Y; Valdivia M; Horisaki R; Kitaguchi K; Saito M; Tanida J; Vera E Opt Express; 2019 Jan; 27(1):240-251. PubMed ID: 30645371 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of a global algorithm for wavefront reconstruction for Shack-Hartmann wave-front sensors and thick fundus reflectors. Liu T; Thibos L; Marin G; Hernandez M Ophthalmic Physiol Opt; 2014 Jan; 34(1):63-72. PubMed ID: 24325435 [TBL] [Abstract][Full Text] [Related]
13. Fast reconstruction of the aberrated scanning lithographic image by a quadratic imaging model and an integral transfer function. Yang Z; Chen X; Jiang H; Liu S Appl Opt; 2020 May; 59(15):4708-4717. PubMed ID: 32543581 [TBL] [Abstract][Full Text] [Related]
14. Ultrafast laser spatial beam shaping based on Zernike polynomials for surface processing. Houzet J; Faure N; Larochette M; Brulez AC; Benayoun S; Mauclair C Opt Express; 2016 Mar; 24(6):6542-52. PubMed ID: 27136844 [TBL] [Abstract][Full Text] [Related]
16. Light-efficient, quantum-limited interferometric wavefront estimation by virtual mode sensing. Lauterbach MA; Ruckel M; Denk W Opt Express; 2006 May; 14(9):3700-14. PubMed ID: 19516517 [TBL] [Abstract][Full Text] [Related]
17. Optimization of the holographic wavefront sensor for open-loop adaptive optics under realistic turbulence. Part I: simulations. Zepp A; Gladysz S; Stein K; Osten W Appl Opt; 2021 Aug; 60(22):F88-F98. PubMed ID: 34612865 [TBL] [Abstract][Full Text] [Related]
18. Acceleration of computer-generated hologram using wavefront-recording plane and look-up table in three-dimensional holographic display. Pi D; Liu J; Han Y; Yu S; Xiang N Opt Express; 2020 Mar; 28(7):9833-9841. PubMed ID: 32225583 [TBL] [Abstract][Full Text] [Related]
19. Wavefront Restoration Technology of Dynamic Non-Uniform Intensity Distribution Based on Extreme Learning Machine. Lin H; He X; Wang S; Yang P Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199788 [TBL] [Abstract][Full Text] [Related]
20. Phase retrieval using a modified Shack-Hartmann wavefront sensor with defocus. Li C; Li B; Zhang S Appl Opt; 2014 Feb; 53(4):618-24. PubMed ID: 24514178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]