BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 27140623)

  • 1. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels.
    Nam S; Hu KH; Butte MJ; Chaudhuri O
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5492-7. PubMed ID: 27140623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoplasticity Enables Mechanical Remodeling of Matrix by Cells.
    Nam S; Lee J; Brownfield DG; Chaudhuri O
    Biophys J; 2016 Nov; 111(10):2296-2308. PubMed ID: 27851951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-tensile rheology of fibrous gels quantifies strain-dependent anisotropy.
    Goren S; Ergaz B; Barak D; Sorkin R; Lesman A
    Acta Biomater; 2024 Jun; 181():272-281. PubMed ID: 38685460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear strain stiffening is not sufficient to explain how far cells can feel on fibrous protein gels.
    Rudnicki MS; Cirka HA; Aghvami M; Sander EA; Wen Q; Billiar KL
    Biophys J; 2013 Jul; 105(1):11-20. PubMed ID: 23823219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils.
    Yang F; Das D; Karunakaran K; Genin GM; Thomopoulos S; Chasiotis I
    Acta Biomater; 2023 Jun; 163():63-77. PubMed ID: 35259515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells.
    van Oosten ASG; Chen X; Chin L; Cruz K; Patteson AE; Pogoda K; Shenoy VB; Janmey PA
    Nature; 2019 Sep; 573(7772):96-101. PubMed ID: 31462779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear elasticity in biological gels.
    Storm C; Pastore JJ; MacKintosh FC; Lubensky TC; Janmey PA
    Nature; 2005 May; 435(7039):191-4. PubMed ID: 15889088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels.
    Kang H; Wen Q; Janmey PA; Tang JX; Conti E; MacKintosh FC
    J Phys Chem B; 2009 Mar; 113(12):3799-805. PubMed ID: 19243107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matrix viscoelasticity promotes liver cancer progression in the pre-cirrhotic liver.
    Fan W; Adebowale K; Váncza L; Li Y; Rabbi MF; Kunimoto K; Chen D; Mozes G; Chiu DK; Li Y; Tao J; Wei Y; Adeniji N; Brunsing RL; Dhanasekaran R; Singhi A; Geller D; Lo SH; Hodgson L; Engleman EG; Charville GW; Charu V; Monga SP; Kim T; Wells RG; Chaudhuri O; Török NJ
    Nature; 2024 Feb; 626(7999):635-642. PubMed ID: 38297127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergent structure-dependent relaxation spectra in viscoelastic fiber networks in extension.
    Dhume RY; Barocas VH
    Acta Biomater; 2019 Mar; 87():245-255. PubMed ID: 30682422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-dependent stress relaxation behavior of healthy right ventricular free wall.
    Liu W; Labus KM; Ahern M; LeBar K; Avazmohammadi R; Puttlitz CM; Wang Z
    Acta Biomater; 2022 Oct; 152():290-299. PubMed ID: 36030049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell contraction induces long-ranged stress stiffening in the extracellular matrix.
    Han YL; Ronceray P; Xu G; Malandrino A; Kamm RD; Lenz M; Broedersz CP; Guo M
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4075-4080. PubMed ID: 29618614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture.
    Lou J; Stowers R; Nam S; Xia Y; Chaudhuri O
    Biomaterials; 2018 Feb; 154():213-222. PubMed ID: 29132046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuum elastic models for force transmission in biopolymer gels.
    Wang H; Xu X
    Soft Matter; 2020 Dec; 16(48):10781-10808. PubMed ID: 33289764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear elasticity of the lung extracellular microenvironment is regulated by macroscale tissue strain.
    Jorba I; Beltrán G; Falcones B; Suki B; Farré R; García-Aznar JM; Navajas D
    Acta Biomater; 2019 Jul; 92():265-276. PubMed ID: 31085362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs.
    Hall MS; Alisafaei F; Ban E; Feng X; Hui CY; Shenoy VB; Wu M
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):14043-14048. PubMed ID: 27872289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructural mechanics of collagen gels in confined compression: poroelasticity, viscoelasticity, and collapse.
    Chandran PL; Barocas VH
    J Biomech Eng; 2004 Apr; 126(2):152-66. PubMed ID: 15179845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons.
    Elliott DM; Robinson PS; Gimbel JA; Sarver JJ; Abboud JA; Iozzo RV; Soslowsky LJ
    Ann Biomed Eng; 2003 May; 31(5):599-605. PubMed ID: 12757203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constituent-based quasi-linear viscoelasticity: a revised quasi-linear modelling framework to capture nonlinear viscoelasticity in arteries.
    Giudici A; van der Laan KWF; van der Bruggen MM; Parikh S; Berends E; Foulquier S; Delhaas T; Reesink KD; Spronck B
    Biomech Model Mechanobiol; 2023 Oct; 22(5):1607-1623. PubMed ID: 37129690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.