BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27140868)

  • 1. Carbon material distribution and flux analysis under varying glucose concentrations in hydrogen-producing Clostridium tyrobutyricum JM1.
    Jo JH; Kim W
    J Biotechnol; 2016 Jun; 228():103-111. PubMed ID: 27140868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of initial glucose concentrations on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1.
    Jo JH; Lee DS; Kim J; Park JM
    J Microbiol Biotechnol; 2009 Mar; 19(3):291-8. PubMed ID: 19349755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1.
    Jo JH; Lee DS; Park JM
    Bioresour Technol; 2008 Nov; 99(17):8485-91. PubMed ID: 18485698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic flux network analysis of fermentative hydrogen production: using Clostridium tyrobutyricum as an example.
    Cheng HH; Whang LM; Lin CA; Liu IC; Wu CW
    Bioresour Technol; 2013 Aug; 141():233-9. PubMed ID: 23659760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic process engineering of Clostridium tyrobutyricum Δack-adhE2 for enhanced n-butanol production from glucose: effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics.
    Du Y; Jiang W; Yu M; Tang IC; Yang ST
    Biotechnol Bioeng; 2015 Apr; 112(4):705-15. PubMed ID: 25363722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinformatics and metabolic flux analysis highlight a new mechanism involved in lactate oxidation in Clostridium tyrobutyricum.
    Munier E; Licandro H; Beuvier E; Cachon R
    Int Microbiol; 2023 Aug; 26(3):501-511. PubMed ID: 36609955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process.
    Jo JH; Lee DS; Park D; Park JM
    Bioresour Technol; 2008 Sep; 99(14):6666-72. PubMed ID: 18248983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering Clostridium tyrobutyricum Metabolism Based on the Whole-Genome Sequence and Proteome Analyses.
    Lee J; Jang YS; Han MJ; Kim JY; Lee SY
    mBio; 2016 Jun; 7(3):. PubMed ID: 27302759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ptb knockout on butyric acid fermentation by Clostridium tyrobutyricum.
    Zhang Y; Yu M; Yang ST
    Biotechnol Prog; 2012; 28(1):52-9. PubMed ID: 22038864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase.
    Yu L; Zhao J; Xu M; Dong J; Varghese S; Yu M; Tang IC; Yang ST
    Appl Microbiol Biotechnol; 2015 Jun; 99(11):4917-30. PubMed ID: 25851718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive evolution for fast growth on glucose and the effects on the regulation of glucose transport system in Clostridium tyrobutyricum.
    Jiang L; Li S; Hu Y; Xu Q; Huang H
    Biotechnol Bioeng; 2012 Mar; 109(3):708-18. PubMed ID: 21956266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative proteomics analysis of high n-butanol producing metabolically engineered Clostridium tyrobutyricum.
    Ma C; Kojima K; Xu N; Mobley J; Zhou L; Yang ST; Liu XM
    J Biotechnol; 2015 Jan; 193():108-19. PubMed ID: 25449011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of butyric acid from glucose and xylose with immobilized cells of Clostridium tyrobutyricum in a fibrous-bed bioreactor.
    Jiang L; Wang J; Liang S; Wang X; Cen P; Xu Z
    Appl Biochem Biotechnol; 2010 Jan; 160(2):350-9. PubMed ID: 18651247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon and energy balances of glucose fermentation with hydrogenproducing bacterium Citrobacter amalonaticus Y19.
    Oh YK; Park S; Seol EH; Kim SH; Kim MS; Hwang JW; Ryu DD
    J Microbiol Biotechnol; 2008 Mar; 18(3):532-8. PubMed ID: 18388473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose.
    Yu L; Xu M; Tang IC; Yang ST
    Biotechnol Bioeng; 2015 Oct; 112(10):2134-41. PubMed ID: 25894463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic and energetic aspects of biohydrogen production of Clostridium tyrobutyricum: The effects of hydraulic retention time and peptone addition.
    Whang LM; Lin CA; Liu IC; Wu CW; Cheng HH
    Bioresour Technol; 2011 Sep; 102(18):8378-83. PubMed ID: 21511461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of benzyl viologen on increasing NADH availability, acetate assimilation, and butyric acid production by Clostridium tyrobutyricum.
    Fu H; Lin M; Tang IC; Wang J; Yang ST
    Biotechnol Bioeng; 2021 Feb; 118(2):770-783. PubMed ID: 33058166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous hydrogen and butyric acid fermentation by immobilized Clostridium tyrobutyricum ATCC 25755: effects of the glucose concentration and hydraulic retention time.
    Mitchell RJ; Kim JS; Jeon BS; Sang BI
    Bioresour Technol; 2009 Nov; 100(21):5352-5. PubMed ID: 19545998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by
    Gonzalez JE; Long CP; Antoniewicz MR
    Metab Eng; 2017 Jan; 39():9-18. PubMed ID: 27840237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production with high butyrate/acetate ratio.
    Suo Y; Ren M; Yang X; Liao Z; Fu H; Wang J
    Appl Microbiol Biotechnol; 2018 May; 102(10):4511-4522. PubMed ID: 29627851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.