These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
682 related articles for article (PubMed ID: 27140870)
1. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae. Quarterman J; Skerker JM; Feng X; Liu IY; Zhao H; Arkin AP; Jin YS J Biotechnol; 2016 Jul; 229():13-21. PubMed ID: 27140870 [TBL] [Abstract][Full Text] [Related]
2. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Lee KS; Hong ME; Jung SC; Ha SJ; Yu BJ; Koo HM; Park SM; Seo JH; Kweon DH; Park JC; Jin YS Biotechnol Bioeng; 2011 Mar; 108(3):621-31. PubMed ID: 21246509 [TBL] [Abstract][Full Text] [Related]
3. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae. Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006 [TBL] [Abstract][Full Text] [Related]
4. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746 [No Abstract] [Full Text] [Related]
5. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol. Kim SR; Skerker JM; Kong II; Kim H; Maurer MJ; Zhang GC; Peng D; Wei N; Arkin AP; Jin YS Metab Eng; 2017 Mar; 40():176-185. PubMed ID: 28216106 [TBL] [Abstract][Full Text] [Related]
6. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae. Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556 [TBL] [Abstract][Full Text] [Related]
7. Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae. Lian J; Li Y; HamediRad M; Zhao H Biotechnol Bioeng; 2014 Aug; 111(8):1521-31. PubMed ID: 24519319 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of galactose consumption rate in Saccharomyces cerevisiae CEN.PK2-1 by CRISPR Cas9 and adaptive evolution for fermentation of Kappaphycus alvarezii hydrolysate. Sunwoo IY; Sukwong P; Jeong DY; Kim SR; Jeong GT; Kim SK J Biotechnol; 2019 May; 297():78-84. PubMed ID: 30959139 [TBL] [Abstract][Full Text] [Related]
9. Multi-omic characterization of laboratory-evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production. Kim SJ; Lee JE; Lee DY; Park H; Kim KH; Park YC Appl Microbiol Biotechnol; 2018 Oct; 102(20):8989-9002. PubMed ID: 30121750 [TBL] [Abstract][Full Text] [Related]
10. A Mutation in Liu JJ; Zhang GC; Kong II; Yun EJ; Zheng JQ; Kweon DH; Jin YS Appl Environ Microbiol; 2018 May; 84(10):. PubMed ID: 29523547 [TBL] [Abstract][Full Text] [Related]
11. The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae. Wang PM; Zheng DQ; Liu TZ; Tao XL; Feng MG; Min H; Jiang XH; Wu XC Bioresour Technol; 2012 Mar; 108():203-10. PubMed ID: 22269055 [TBL] [Abstract][Full Text] [Related]
12. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol. Görgens JF; Bressler DC; van Rensburg E Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118 [TBL] [Abstract][Full Text] [Related]
13. Deletion of the Chen X; Lu Z; Chen Y; Wu R; Luo Z; Lu Q; Guan N; Chen D Microbiol Spectr; 2021 Sep; 9(1):e0008821. PubMed ID: 34346754 [TBL] [Abstract][Full Text] [Related]
14. 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae. Nan H; Seo SO; Oh EJ; Seo JH; Cate JH; Jin YS Appl Microbiol Biotechnol; 2014 Jun; 98(12):5757-64. PubMed ID: 24743979 [TBL] [Abstract][Full Text] [Related]
15. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Ostergaard S; Olsson L; Johnston M; Nielsen J Nat Biotechnol; 2000 Dec; 18(12):1283-6. PubMed ID: 11101808 [TBL] [Abstract][Full Text] [Related]
16. Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Hong KK; Vongsangnak W; Vemuri GN; Nielsen J Proc Natl Acad Sci U S A; 2011 Jul; 108(29):12179-84. PubMed ID: 21715660 [TBL] [Abstract][Full Text] [Related]
17. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Lian J; Chao R; Zhao H Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose. Lee WH; Jin YS J Microbiol Biotechnol; 2017 Sep; 27(9):1649-1656. PubMed ID: 28683531 [TBL] [Abstract][Full Text] [Related]
19. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317 [TBL] [Abstract][Full Text] [Related]
20. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Ishii J; Yoshimura K; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]