These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 27141343)

  • 1. Tumor-intrinsic oncogene pathways mediating immune avoidance.
    Spranger S; Gajewski TF
    Oncoimmunology; 2016 Mar; 5(3):e1086862. PubMed ID: 27141343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new paradigm for tumor immune escape: β-catenin-driven immune exclusion.
    Spranger S; Gajewski TF
    J Immunother Cancer; 2015; 3():43. PubMed ID: 26380088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment.
    Gajewski TF; Corrales L; Williams J; Horton B; Sivan A; Spranger S
    Adv Exp Med Biol; 2017; 1036():19-31. PubMed ID: 29275462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WNT/β-Catenin Signaling Pathway Regulating T Cell-Inflammation in the Tumor Microenvironment.
    Li X; Xiang Y; Li F; Yin C; Li B; Ke X
    Front Immunol; 2019; 10():2293. PubMed ID: 31616443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The non-T-cell-inflamed tumor microenvironment: contributing factors and therapeutic solutions.
    Horton BL; Spranger S
    Emerg Top Life Sci; 2017 Dec; 1(5):447-456. PubMed ID: 33525802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic β-catenin signaling suppresses CD8
    Xue J; Yu X; Xue L; Ge X; Zhao W; Peng W
    Biomed Pharmacother; 2019 Jul; 115():108921. PubMed ID: 31078045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor-intrinsic signaling pathways: key roles in the regulation of the immunosuppressive tumor microenvironment.
    Yang L; Li A; Lei Q; Zhang Y
    J Hematol Oncol; 2019 Nov; 12(1):125. PubMed ID: 31775797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WNT/β-catenin Pathway Activation Correlates with Immune Exclusion across Human Cancers.
    Luke JJ; Bao R; Sweis RF; Spranger S; Gajewski TF
    Clin Cancer Res; 2019 May; 25(10):3074-3083. PubMed ID: 30635339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment.
    Spranger S
    Int Immunol; 2016 Aug; 28(8):383-91. PubMed ID: 26989092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Next Hurdle in Cancer Immunotherapy: Overcoming the Non-T-Cell-Inflamed Tumor Microenvironment.
    Gajewski TF
    Semin Oncol; 2015 Aug; 42(4):663-71. PubMed ID: 26320069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies.
    Kato D; Yaguchi T; Iwata T; Morii K; Nakagawa T; Nishimura R; Kawakami Y
    Nihon Rinsho Meneki Gakkai Kaishi; 2017; 40(1):68-77. PubMed ID: 28539557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging role of immunotherapy in urothelial carcinoma-Immunobiology/biomarkers.
    Sweis RF; Galsky MD
    Urol Oncol; 2016 Dec; 34(12):556-565. PubMed ID: 27836246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macrophage-Derived CXCL9 and CXCL10 Are Required for Antitumor Immune Responses Following Immune Checkpoint Blockade.
    House IG; Savas P; Lai J; Chen AXY; Oliver AJ; Teo ZL; Todd KL; Henderson MA; Giuffrida L; Petley EV; Sek K; Mardiana S; Gide TN; Quek C; Scolyer RA; Long GV; Wilmott JS; Loi S; Darcy PK; Beavis PA
    Clin Cancer Res; 2020 Jan; 26(2):487-504. PubMed ID: 31636098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells.
    Foy SP; Mandl SJ; dela Cruz T; Cote JJ; Gordon EJ; Trent E; Delcayre A; Breitmeyer J; Franzusoff A; Rountree RB
    Cancer Immunol Immunother; 2016 May; 65(5):537-49. PubMed ID: 26961085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Lung Cancer Immunotherapy: Input of T-Cell Epitopes Associated With Impaired Peptide Processing.
    Leclerc M; Mezquita L; Guillebot De Nerville G; Tihy I; Malenica I; Chouaib S; Mami-Chouaib F
    Front Immunol; 2019; 10():1505. PubMed ID: 31333652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor and Host Factors Controlling Antitumor Immunity and Efficacy of Cancer Immunotherapy.
    Spranger S; Sivan A; Corrales L; Gajewski TF
    Adv Immunol; 2016; 130():75-93. PubMed ID: 26923000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors.
    Pitt JM; Vétizou M; Daillère R; Roberti MP; Yamazaki T; Routy B; Lepage P; Boneca IG; Chamaillard M; Kroemer G; Zitvogel L
    Immunity; 2016 Jun; 44(6):1255-69. PubMed ID: 27332730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistance to Checkpoint Inhibition in Cancer Immunotherapy.
    Barrueto L; Caminero F; Cash L; Makris C; Lamichhane P; Deshmukh RR
    Transl Oncol; 2020 Mar; 13(3):100738. PubMed ID: 32114384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma.
    Spranger S; Luke JJ; Bao R; Zha Y; Hernandez KM; Li Y; Gajewski AP; Andrade J; Gajewski TF
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):E7759-E7768. PubMed ID: 27837020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitating T Cell Infiltration in Tumor Microenvironment Overcomes Resistance to PD-L1 Blockade.
    Tang H; Wang Y; Chlewicki LK; Zhang Y; Guo J; Liang W; Wang J; Wang X; Fu YX
    Cancer Cell; 2016 Mar; 29(3):285-296. PubMed ID: 26977880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.