These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 27141850)

  • 21. Antimicrobial peptides as model molecules for the development of novel antiviral agents in aquaculture.
    Falco A; Ortega-Villaizan M; Chico V; Brocal I; Perez L; Coll JM; Estepa A
    Mini Rev Med Chem; 2009 Sep; 9(10):1159-64. PubMed ID: 19817709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AMP-BERT: Prediction of antimicrobial peptide function based on a BERT model.
    Lee H; Lee S; Lee I; Nam H
    Protein Sci; 2023 Jan; 32(1):e4529. PubMed ID: 36461699
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review on antimicrobial peptides databases and the computational tools.
    Ramazi S; Mohammadi N; Allahverdi A; Khalili E; Abdolmaleki P
    Database (Oxford); 2022 Mar; 2022():. PubMed ID: 35305010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides.
    Boone K; Wisdom C; Camarda K; Spencer P; Tamerler C
    BMC Bioinformatics; 2021 May; 22(1):239. PubMed ID: 33975547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep learning improves antimicrobial peptide recognition.
    Veltri D; Kamath U; Shehu A
    Bioinformatics; 2018 Aug; 34(16):2740-2747. PubMed ID: 29590297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of antimicrobial peptides based on sequence alignment and feature selection methods.
    Wang P; Hu L; Liu G; Jiang N; Chen X; Xu J; Zheng W; Li L; Tan M; Chen Z; Song H; Cai YD; Chou KC
    PLoS One; 2011 Apr; 6(4):e18476. PubMed ID: 21533231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning?
    Lee EY; Lee MW; Fulan BM; Ferguson AL; Wong GCL
    Interface Focus; 2017 Dec; 7(6):20160153. PubMed ID: 29147555
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leveraging family-specific signatures for AMP discovery and high-throughput annotation.
    Waghu FH; Barai RS; Idicula-Thomas S
    Sci Rep; 2016 Apr; 6():24684. PubMed ID: 27089856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features.
    Singh O; Hsu WL; Su EC
    BMC Bioinformatics; 2021 Jul; 22(1):389. PubMed ID: 34330209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-Throughput Identification of Putative Antimicrobial Peptides from Multi-Omics Data of the Lined Seahorse (
    Chen X; Yi Y; You X; Liu J; Shi Q
    Mar Drugs; 2019 Dec; 18(1):. PubMed ID: 31905755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ClassAMP: a prediction tool for classification of antimicrobial peptides.
    Joseph S; Karnik S; Nilawe P; Jayaraman VK; Idicula-Thomas S
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1535-8. PubMed ID: 22732690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning.
    Yan J; Bhadra P; Li A; Sethiya P; Qin L; Tai HK; Wong KH; Siu SWI
    Mol Ther Nucleic Acids; 2020 Jun; 20():882-894. PubMed ID: 32464552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Applications of antimicrobial peptides from fish and perspectives for the future.
    Rajanbabu V; Chen JY
    Peptides; 2011 Feb; 32(2):415-20. PubMed ID: 21093512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational resources and tools for antimicrobial peptides.
    Liu S; Fan L; Sun J; Lao X; Zheng H
    J Pept Sci; 2017 Jan; 23(1):4-12. PubMed ID: 27966278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CalcAMP: A New Machine Learning Model for the Accurate Prediction of Antimicrobial Activity of Peptides.
    Bournez C; Riool M; de Boer L; Cordfunke RA; de Best L; van Leeuwen R; Drijfhout JW; Zaat SAJ; van Westen GJP
    Antibiotics (Basel); 2023 Apr; 12(4):. PubMed ID: 37107088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis and prediction of the critical regions of antimicrobial peptides based on conditional random fields.
    Chang KY; Lin TP; Shih LY; Wang CK
    PLoS One; 2015; 10(3):e0119490. PubMed ID: 25803302
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Putative Antimicrobial Peptides in Fish: Using Zebrafish as a Representative.
    Chen X; Yi Y; Bian C; You X; Shi Q
    Protein Pept Lett; 2020; 27(11):1059-1067. PubMed ID: 32416669
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Benchmarks in antimicrobial peptide prediction are biased due to the selection of negative data.
    Sidorczuk K; Gagat P; Pietluch F; Kała J; Rafacz D; Bąkała L; Słowik J; Kolenda R; Rödiger S; Fingerhut LCHW; Cooke IR; Mackiewicz P; Burdukiewicz M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35988923
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Target-AMP: Computational prediction of antimicrobial peptides by coupling sequential information with evolutionary profile.
    Jan A; Hayat M; Wedyan M; Alturki R; Gazzawe F; Ali H; Alarfaj FK
    Comput Biol Med; 2022 Dec; 151(Pt A):106311. PubMed ID: 36410097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel antimicrobial peptide derived from fish goose type lysozyme disrupts the membrane of Salmonella enterica.
    Kumaresan V; Bhatt P; Ganesh MR; Harikrishnan R; Arasu M; Al-Dhabi NA; Pasupuleti M; Marimuthu K; Arockiaraj J
    Mol Immunol; 2015 Dec; 68(2 Pt B):421-33. PubMed ID: 26477736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.