BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27142241)

  • 1. Spatial Cross-Talk between Oxidative Stress and DNA Replication in Human Fibroblasts.
    Radulovic M; Baqader NO; Stoeber K; Godovac-Zimmermann J
    J Proteome Res; 2016 Jun; 15(6):1907-38. PubMed ID: 27142241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial perspectives in the redox code-Mass spectrometric proteomics studies of moonlighting proteins.
    Pinto G; Radulovic M; Godovac-Zimmermann J
    Mass Spectrom Rev; 2018 Jan; 37(1):81-100. PubMed ID: 27186965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear cytoplasmic trafficking of proteins is a major response of human fibroblasts to oxidative stress.
    Baqader NO; Radulovic M; Crawford M; Stoeber K; Godovac-Zimmermann J
    J Proteome Res; 2014 Oct; 13(10):4398-423. PubMed ID: 25133973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular proteomics reveals a role for nucleo-cytoplasmic trafficking at the DNA replication origin activation checkpoint.
    Mulvey CM; Tudzarova S; Crawford M; Williams GH; Stoeber K; Godovac-Zimmermann J
    J Proteome Res; 2013 Mar; 12(3):1436-53. PubMed ID: 23320540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage.
    Boisvert FM; Lam YW; Lamont D; Lamond AI
    Mol Cell Proteomics; 2010 Mar; 9(3):457-70. PubMed ID: 20026476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomics reveals the importance of the dynamic redistribution of the subcellular location of proteins in breast cancer cells.
    Pinto G; Alhaiek AA; Godovac-Zimmermann J
    Expert Rev Proteomics; 2015 Feb; 12(1):61-74. PubMed ID: 25591448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the Spatial Proteome of Metastatic Cells in Colorectal Cancer.
    Mendes M; Peláez-García A; López-Lucendo M; Bartolomé RA; Calviño E; Barderas R; Casal JI
    Proteomics; 2017 Oct; 17(19):. PubMed ID: 28861940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics of nucleocytoplasmic partitioning.
    Nguyen T; Pappireddi N; Wühr M
    Curr Opin Chem Biol; 2019 Feb; 48():55-63. PubMed ID: 30472625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic changes in nuclear localization of a DNA-binding protein tyrosine phosphatase TCPTP in response to DNA damage and replication arrest.
    Sree NK; Anesh R; Radha V
    Cell Biol Toxicol; 2012 Dec; 28(6):409-19. PubMed ID: 22976903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomics methods for subcellular proteome analysis.
    Drissi R; Dubois ML; Boisvert FM
    FEBS J; 2013 Nov; 280(22):5626-34. PubMed ID: 24034475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the contributions of the nuclear and cytoplasmic compartments to global gene expression in human cells.
    Barthelson RA; Lambert GM; Vanier C; Lynch RM; Galbraith DW
    BMC Genomics; 2007 Sep; 8():340. PubMed ID: 17894886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of Alix with late endosomal lysobisphosphatidic acid is important for dengue virus infection in human endothelial cells.
    Pattanakitsakul SN; Poungsawai J; Kanlaya R; Sinchaikul S; Chen ST; Thongboonkerd V
    J Proteome Res; 2010 Sep; 9(9):4640-8. PubMed ID: 20669987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative spatial proteomics analysis of proteome turnover in human cells.
    Boisvert FM; Ahmad Y; Gierliński M; Charrière F; Lamont D; Scott M; Barton G; Lamond AI
    Mol Cell Proteomics; 2012 Mar; 11(3):M111.011429. PubMed ID: 21937730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full Characterization of Localization Diversity in the Human Protein Interactome.
    Cheng L; Fan K; Huang Y; Wang D; Leung KS
    J Proteome Res; 2017 Aug; 16(8):3019-3029. PubMed ID: 28707887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PCNA interacts with hHus1/hRad9 in response to DNA damage and replication inhibition.
    Komatsu K; Wharton W; Hang H; Wu C; Singh S; Lieberman HB; Pledger WJ; Wang HG
    Oncogene; 2000 Nov; 19(46):5291-7. PubMed ID: 11077446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TRANSPIRE: A Computational Pipeline to Elucidate Intracellular Protein Movements from Spatial Proteomics Data Sets.
    Kennedy MA; Hofstadter WA; Cristea IM
    J Am Soc Mass Spectrom; 2020 Jul; 31(7):1422-1439. PubMed ID: 32401031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoform-specific differences in rapid nucleocytoplasmic shuttling cause distinct subcellular distributions of 14-3-3 sigma and 14-3-3 zeta.
    van Hemert MJ; Niemantsverdriet M; Schmidt T; Backendorf C; Spaink HP
    J Cell Sci; 2004 Mar; 117(Pt 8):1411-20. PubMed ID: 14996909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orthogonal separation techniques for the characterization of the yeast nuclear proteome.
    Gauci S; Veenhoff LM; Heck AJ; Krijgsveld J
    J Proteome Res; 2009 Jul; 8(7):3451-63. PubMed ID: 19453177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular quantitative proteomics reveals multiple pathway cross-talk that coordinates specific signaling and transcriptional regulation for the early host response to LPS.
    Du R; Long J; Yao J; Dong Y; Yang X; Tang S; Zuo S; He Y; Chen X
    J Proteome Res; 2010 Apr; 9(4):1805-21. PubMed ID: 20158268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of in vivo nuclear transport dynamics of actin and its co-factors IQGAP1 and Rac1 in response to DNA replication stress.
    Johnson MA; Sharma M; Mok MT; Henderson BR
    Biochim Biophys Acta; 2013 Oct; 1833(10):2334-47. PubMed ID: 23770048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.