BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 27142243)

  • 21. Assessment of fracture risk in proximal tibia with tumorous bone defects by a finite element method.
    Lin Y; Ma L; Zhu Y; Lin Z; Yao Z; Zhang Y; Mao C
    Microsc Res Tech; 2017 Sep; 80(9):975-984. PubMed ID: 28556495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of vertebral strength under loading conditions occurring in activities of daily living using a computed tomography-based nonlinear finite element method.
    Matsumoto T; Ohnishi I; Bessho M; Imai K; Ohashi S; Nakamura K
    Spine (Phila Pa 1976); 2009 Jun; 34(14):1464-9. PubMed ID: 19525837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting proximal femoral strength using structural engineering models.
    Keyak JH; Kaneko TS; Tehranzadeh J; Skinner HB
    Clin Orthop Relat Res; 2005 Aug; (437):219-28. PubMed ID: 16056052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanical analysis for stress fractures of the anterior middle third of the tibia in athletes: nonlinear analysis using a three-dimensional finite element method.
    Sonoda N; Chosa E; Totoribe K; Tajima N
    J Orthop Sci; 2003; 8(4):505-13. PubMed ID: 12898301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of the strength and fracture location of the femoral neck by CT-based finite-element method: a preliminary study on patients with hip fracture.
    Bessho M; Ohnishi I; Okazaki H; Sato W; Kominami H; Matsunaga S; Nakamura K
    J Orthop Sci; 2004; 9(6):545-50. PubMed ID: 16228668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model.
    Whyne CM; Hu SS; Lotz JC
    Spine (Phila Pa 1976); 2003 Apr; 28(7):652-60. PubMed ID: 12671351
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of torsional failure in 22 cadaver femora with and without simulated subtrochanteric metastatic defects: a CT scan-based finite element analysis.
    Spruijt S; van der Linden JC; Dijkstra PD; Wiggers T; Oudkerk M; Snijders CJ; van Keulen F; Verhaar JA; Weinans H; Swierstra BA
    Acta Orthop; 2006 Jun; 77(3):474-81. PubMed ID: 16819688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High resolution quantitative computed tomography-based assessment of trabecular microstructure and strength estimates by finite-element analysis of the spine, but not DXA, reflects vertebral fracture status in men with glucocorticoid-induced osteoporosis.
    Graeff C; Marin F; Petto H; Kayser O; Reisinger A; Peña J; Zysset P; Glüer CC
    Bone; 2013 Feb; 52(2):568-77. PubMed ID: 23149277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How accurately can we predict the fracture load of the proximal femur using finite element models?
    van den Munckhof S; Zadpoor AA
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):373-80. PubMed ID: 24485865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. QCT-based finite element prediction of pathologic fractures in proximal femora with metastatic lesions.
    Benca E; Synek A; Amini M; Kainberger F; Hirtler L; Windhager R; Mayr W; Pahr DH
    Sci Rep; 2019 Jul; 9(1):10305. PubMed ID: 31311994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modification to Mirels scoring system location component improves fracture prediction for metastatic disease of the proximal femur.
    Amendola RL; Miller MA; Kaupp SM; Cleary RJ; Damron TA; Mann KA
    BMC Musculoskelet Disord; 2023 Jan; 24(1):65. PubMed ID: 36694156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finite element analysis and computed tomography based structural rigidity analysis of rat tibia with simulated lytic defects.
    Rennick JA; Nazarian A; Entezari V; Kimbaris J; Tseng A; Masoudi A; Nayeb-Hashemi H; Vaziri A; Snyder BD
    J Biomech; 2013 Oct; 46(15):2701-9. PubMed ID: 23972429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural consequences of endosteal metastatic lesions in long bones.
    Hipp JA; McBroom RJ; Cheal EJ; Hayes WC
    J Orthop Res; 1989; 7(6):828-37. PubMed ID: 2795323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The risk assessment of pathological fracture in the proximal femur using a CT-based finite element method.
    Kawabata Y; Matsuo K; Nezu Y; Kamiishi T; Inaba Y; Saito T
    J Orthop Sci; 2017 Sep; 22(5):931-937. PubMed ID: 28688810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental validation of finite element analysis of human vertebral collapse under large compressive strains.
    Hosseini HS; Clouthier AL; Zysset PK
    J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24384581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of in situ/in vitro three-dimensional quantitative computed tomography image voxel size on the finite element model of human vertebral cancellous bone.
    Lu Y; Engelke K; Glueer CC; Morlock MM; Huber G
    Proc Inst Mech Eng H; 2014 Nov; 228(11):1208-13. PubMed ID: 25500865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonlinear finite element model predicts vertebral bone strength and fracture site.
    Imai K; Ohnishi I; Bessho M; Nakamura K
    Spine (Phila Pa 1976); 2006 Jul; 31(16):1789-94. PubMed ID: 16845352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationships between femoral strength evaluated by nonlinear finite element analysis and BMD, material distribution and geometric morphology.
    Gong H; Zhang M; Fan Y; Kwok WL; Leung PC
    Ann Biomed Eng; 2012 Jul; 40(7):1575-85. PubMed ID: 22258889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space.
    Wolfram U; Gross T; Pahr DH; Schwiedrzik J; Wilke HJ; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():218-28. PubMed ID: 23159819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro.
    Dall'Ara E; Schmidt R; Pahr D; Varga P; Chevalier Y; Patsch J; Kainberger F; Zysset P
    J Biomech; 2010 Aug; 43(12):2374-80. PubMed ID: 20462582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.