These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. Manor B; Costa MD; Hu K; Newton E; Starobinets O; Kang HG; Peng CK; Novak V; Lipsitz LA J Appl Physiol (1985); 2010 Dec; 109(6):1786-91. PubMed ID: 20947715 [TBL] [Abstract][Full Text] [Related]
8. Adding body load modifies the vibratory sensation of the foot sole and affects the postural control. Jammes Y; Ferrand E; Fraud C; Boussuges A; Weber JP Mil Med Res; 2018 Aug; 5(1):28. PubMed ID: 30115124 [TBL] [Abstract][Full Text] [Related]
9. Complexity-based measures inform Tai Chi's impact on standing postural control in older adults with peripheral neuropathy. Manor B; Lipsitz LA; Wayne PM; Peng CK; Li L BMC Complement Altern Med; 2013 Apr; 13():87. PubMed ID: 23587193 [TBL] [Abstract][Full Text] [Related]
10. The Complexity of Standing Postural Sway Associates with Future Falls in Community-Dwelling Older Adults: The MOBILIZE Boston Study. Zhou J; Habtemariam D; Iloputaife I; Lipsitz LA; Manor B Sci Rep; 2017 Jun; 7(1):2924. PubMed ID: 28592844 [TBL] [Abstract][Full Text] [Related]
11. Effects of aging and tactile stochastic resonance on postural performance and postural control in a sensory conflict task. Dettmer M; Pourmoghaddam A; Lee BC; Layne CS Somatosens Mot Res; 2015; 32(2):128-35. PubMed ID: 25884289 [TBL] [Abstract][Full Text] [Related]
12. Changes in postural sway frequency and complexity in altered sensory environments following whole body vibrations. Dickin DC; McClain MA; Hubble RP; Doan JB; Sessford D Hum Mov Sci; 2012 Oct; 31(5):1238-46. PubMed ID: 22516837 [TBL] [Abstract][Full Text] [Related]
13. The potential influence of stochastic resonance vibrations on neuromuscular strategies and center of pressure sway during single-leg stance. Chen WM; Li JW; Geng X; Wang C; Chen L; Ma X Clin Biomech (Bristol); 2020 Jul; 77():105069. PubMed ID: 32502753 [TBL] [Abstract][Full Text] [Related]
15. Inhibition and decision-processing speed are associated with performance on dynamic posturography in older adults. Redfern MS; Chambers AJ; Sparto PJ; Furman JM; Jennings JR Exp Brain Res; 2019 Jan; 237(1):37-45. PubMed ID: 30302490 [TBL] [Abstract][Full Text] [Related]
16. Postural control development from late childhood through young adulthood. Kiefer AW; Armitano-Lago CN; Cone BL; Bonnette S; Rhea CK; Cummins-Sebree S; Riley MA Gait Posture; 2021 May; 86():169-173. PubMed ID: 33751968 [TBL] [Abstract][Full Text] [Related]
17. Effect of increasing difficulty in standing balance tasks with visual feedback on postural sway and EMG: complexity and performance. Barbado Murillo D; Sabido Solana R; Vera-Garcia FJ; Gusi Fuertes N; Moreno FJ Hum Mov Sci; 2012 Oct; 31(5):1224-37. PubMed ID: 22658508 [TBL] [Abstract][Full Text] [Related]
18. Visuomotor control dynamics of quiet standing under single and dual task conditions in younger and older adults. Walsh GS Neurosci Lett; 2021 Sep; 761():136122. PubMed ID: 34293417 [TBL] [Abstract][Full Text] [Related]
19. The complexity of standing postural control in older adults: a modified detrended fluctuation analysis based upon the empirical mode decomposition algorithm. Zhou J; Manor B; Liu D; Hu K; Zhang J; Fang J PLoS One; 2013; 8(5):e62585. PubMed ID: 23650518 [TBL] [Abstract][Full Text] [Related]
20. Effects of transcranial direct current stimulation (tDCS) on multiscale complexity of dual-task postural control in older adults. Zhou D; Zhou J; Chen H; Manor B; Lin J; Zhang J Exp Brain Res; 2015 Aug; 233(8):2401-9. PubMed ID: 25963755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]