BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27142459)

  • 1. Robust near real-time estimation of physiological parameters from megapixel multispectral images with inverse Monte Carlo and random forest regression.
    Wirkert SJ; Kenngott H; Mayer B; Mietkowski P; Wagner M; Sauer P; Clancy NT; Elson DS; Maier-Hein L
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):909-17. PubMed ID: 27142459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera.
    Yoshida K; Nishidate I; Ishizuka T; Kawauchi S; Sato S; Sato M
    J Biomed Opt; 2015 May; 20(5):051026. PubMed ID: 25614979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy.
    Fredriksson I; Larsson M; Strömberg T
    J Biomed Opt; 2012 Apr; 17(4):047004. PubMed ID: 22559695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New closed-form approximation for skin chromophore mapping.
    Välisuo P; Kaartinen I; Tuchin V; Alander J
    J Biomed Opt; 2011 Apr; 16(4):046012. PubMed ID: 21529081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of skin optical parameters for real-time hyperspectral imaging applications.
    Bjorgan A; Milanic M; Randeberg LL
    J Biomed Opt; 2014 Jun; 19(6):066003. PubMed ID: 24898603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model based inversion for deriving maps of histological parameters characteristic of cancer from ex-vivo multispectral images of the colon.
    Claridge E; Hidović-Rowe D
    IEEE Trans Med Imaging; 2014 Apr; 33(4):822-35. PubMed ID: 24239991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning approach for rapid and accurate estimation of optical properties using spatial frequency domain imaging.
    Panigrahi S; Gioux S
    J Biomed Opt; 2018 Dec; 24(7):1-6. PubMed ID: 30550050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy.
    Hennessy R; Lim SL; Markey MK; Tunnell JW
    J Biomed Opt; 2013 Mar; 18(3):037003. PubMed ID: 23455965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Transcutaneous Monitoring of Hemoglobin Derivatives Using a Red-Green-Blue Camera-Based Spectral Imaging Technique.
    Khatun F; Aizu Y; Nishidate I
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33546389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation.
    Nishidate I; Aizu Y; Mishina H
    J Biomed Opt; 2004; 9(4):700-10. PubMed ID: 15250756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time scatter estimation for medical CT using the deep scatter estimation: Method and robustness analysis with respect to different anatomies, dose levels, tube voltages, and data truncation.
    Maier J; Eulig E; Vöth T; Knaup M; Kuntz J; Sawall S; Kachelrieß M
    Med Phys; 2019 Jan; 46(1):238-249. PubMed ID: 30390295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Portable, low-cost multispectral imaging system: design, development, validation, and utilization.
    Bolton FJ; Bernat AS; Bar-Am K; Levitz D; Jacques S
    J Biomed Opt; 2018 Dec; 23(12):1-11. PubMed ID: 30520274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional quantitative photoacoustic tomography using an adjoint radiance Monte Carlo model and gradient descent.
    Buchmann J; Kaplan B; Powell S; Prohaska S; Laufer J
    J Biomed Opt; 2019 Jun; 24(6):1-13. PubMed ID: 31172727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-contrast subcutaneous vein detection and localization using multispectral imaging.
    Wang F; Behrooz A; Morris M; Adibi A
    J Biomed Opt; 2013 May; 18(5):50504. PubMed ID: 23649005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretation of principal components of the reflectance spectra obtained from multispectral images of exposed pig brain.
    Yokoyama K; Watanabe M; Watanbe Y; Okada E
    J Biomed Opt; 2005; 10(1):11005. PubMed ID: 15847571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of 3D Monte Carlo-based scatter correction for 201Tl cardiac perfusion SPECT.
    Xiao J; de Wit TC; Zbijewski W; Staelens SG; Beekman FJ
    J Nucl Med; 2007 Apr; 48(4):637-44. PubMed ID: 17401103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive evaluation of hemodynamics and light scattering property during two-stage mouse cutaneous carcinogenesis based on multispectral diffuse reflectance images at isosbestic wavelengths of hemoglobin.
    Wares MA; Tobita N; Kawauchi S; Sato S; Nishidate I
    J Biomed Opt; 2019 Jan; 24(3):1-11. PubMed ID: 30635994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemoglobin parameters from diffuse reflectance data.
    Mourant JR; Marina OC; Hebert TM; Kaur G; Smith HO
    J Biomed Opt; 2014 Mar; 19(3):37004. PubMed ID: 24671524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction.
    Elschot M; Smits ML; Nijsen JF; Lam MG; Zonnenberg BA; van den Bosch MA; Viergever MA; de Jong HW
    Med Phys; 2013 Nov; 40(11):112502. PubMed ID: 24320461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.