BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 27142487)

  • 1. Lessons learned from the cystic fibrosis pig.
    Meyerholz DK
    Theriogenology; 2016 Jul; 86(1):427-32. PubMed ID: 27142487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of lung disease in cystic fibrosis pigs.
    Wine JJ
    Sci Transl Med; 2010 Apr; 2(29):29ps20. PubMed ID: 20427819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs.
    Rogers CS; Stoltz DA; Meyerholz DK; Ostedgaard LS; Rokhlina T; Taft PJ; Rogan MP; Pezzulo AA; Karp PH; Itani OA; Kabel AC; Wohlford-Lenane CL; Davis GJ; Hanfland RA; Smith TL; Samuel M; Wax D; Murphy CN; Rieke A; Whitworth K; Uc A; Starner TD; Brogden KA; Shilyansky J; McCray PB; Zabner J; Prather RS; Welsh MJ
    Science; 2008 Sep; 321(5897):1837-41. PubMed ID: 18818360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The porcine lung as a potential model for cystic fibrosis.
    Rogers CS; Abraham WM; Brogden KA; Engelhardt JF; Fisher JT; McCray PB; McLennan G; Meyerholz DK; Namati E; Ostedgaard LS; Prather RS; Sabater JR; Stoltz DA; Zabner J; Welsh MJ
    Am J Physiol Lung Cell Mol Physiol; 2008 Aug; 295(2):L240-63. PubMed ID: 18487356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis.
    Klymiuk N; Mundhenk L; Kraehe K; Wuensch A; Plog S; Emrich D; Langenmayer MC; Stehr M; Holzinger A; Kröner C; Richter A; Kessler B; Kurome M; Eddicks M; Nagashima H; Heinritzi K; Gruber AD; Wolf E
    J Mol Med (Berl); 2012 May; 90(5):597-608. PubMed ID: 22170306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene.
    Fan Z; Perisse IV; Cotton CU; Regouski M; Meng Q; Domb C; Van Wettere AJ; Wang Z; Harris A; White KL; Polejaeva IA
    JCI Insight; 2018 Oct; 3(19):. PubMed ID: 30282831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of cftr function leads to pancreatic destruction in larval zebrafish.
    Navis A; Bagnat M
    Dev Biol; 2015 Mar; 399(2):237-48. PubMed ID: 25592226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CFTR and ENaC debate: how important is ENaC in CF lung disease?
    Collawn JF; Lazrak A; Bebok Z; Matalon S
    Am J Physiol Lung Cell Mol Physiol; 2012 Jun; 302(11):L1141-6. PubMed ID: 22492740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lung disease in mice with cystic fibrosis.
    Kent G; Iles R; Bear CE; Huan LJ; Griesenbach U; McKerlie C; Frndova H; Ackerley C; Gosselin D; Radzioch D; O'Brodovich H; Tsui LC; Buchwald M; Tanswell AK
    J Clin Invest; 1997 Dec; 100(12):3060-9. PubMed ID: 9399953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models.
    Wang Y; Wrennall JA; Cai Z; Li H; Sheppard DN
    Int J Biochem Cell Biol; 2014 Jul; 52():47-57. PubMed ID: 24727426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations of Cystic Fibrosis Transmembrane Conductance Regulator Gene Cause a Monocyte-Selective Adhesion Deficiency.
    Sorio C; Montresor A; Bolomini-Vittori M; Caldrer S; Rossi B; Dusi S; Angiari S; Johansson JE; Vezzalini M; Leal T; Calcaterra E; Assael BM; Melotti P; Laudanna C
    Am J Respir Crit Care Med; 2016 May; 193(10):1123-33. PubMed ID: 26694899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative biology of cystic fibrosis animal models.
    Fisher JT; Zhang Y; Engelhardt JF
    Methods Mol Biol; 2011; 742():311-34. PubMed ID: 21547741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cystic fibrosis mouse model-dependent intestinal structure and gut microbiome.
    Bazett M; Honeyman L; Stefanov AN; Pope CE; Hoffman LR; Haston CK
    Mamm Genome; 2015 Jun; 26(5-6):222-34. PubMed ID: 25721416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postnatal airway growth in cystic fibrosis piglets.
    Adam RJ; Abou Alaiwa MH; Bouzek DC; Cook DP; Gansemer ND; Taft PJ; Powers LS; Stroik MR; Hoegger MJ; McMenimen JD; Hoffman EA; Zabner J; Welsh MJ; Meyerholz DK; Stoltz DA
    J Appl Physiol (1985); 2017 Sep; 123(3):526-533. PubMed ID: 28620056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New animal models of cystic fibrosis: what are they teaching us?
    Keiser NW; Engelhardt JF
    Curr Opin Pulm Med; 2011 Nov; 17(6):478-83. PubMed ID: 21857224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lung pathology in response to repeated exposure to Staphylococcus aureus in congenic residual function cystic fibrosis mice does not increase in response to decreased CFTR levels or increased bacterial load.
    Davidson DJ; Webb S; Teague P; Govan JR; Dorin JR
    Pathobiology; 2004; 71(3):152-8. PubMed ID: 15051928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain-dependent pulmonary gene expression profiles of a cystic fibrosis mouse model.
    Haston CK; Cory S; Lafontaine L; Dorion G; Hallett MT
    Physiol Genomics; 2006 Apr; 25(2):336-45. PubMed ID: 16614460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets.
    Sun X; Olivier AK; Liang B; Yi Y; Sui H; Evans TI; Zhang Y; Zhou W; Tyler SR; Fisher JT; Keiser NW; Liu X; Yan Z; Song Y; Goeken JA; Kinyon JM; Fligg D; Wang X; Xie W; Lynch TJ; Kaminsky PM; Stewart ZA; Pope RM; Frana T; Meyerholz DK; Parekh K; Engelhardt JF
    Am J Respir Cell Mol Biol; 2014 Mar; 50(3):502-12. PubMed ID: 24074402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Animal models of gastrointestinal and liver diseases. Animal models of cystic fibrosis: gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology.
    Olivier AK; Gibson-Corley KN; Meyerholz DK
    Am J Physiol Gastrointest Liver Physiol; 2015 Mar; 308(6):G459-71. PubMed ID: 25591863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron Homeostasis and Inflammatory Status in Mice Deficient for the Cystic Fibrosis Transmembrane Regulator.
    Deschemin JC; Allouche S; Brouillard F; Vaulont S
    PLoS One; 2015; 10(12):e0145685. PubMed ID: 26709821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.