These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 27142693)

  • 21. In situ XAS study of CoB
    Xi L; Schwanke C; Zhou D; Drevon D; van de Krol R; Lange KM
    Dalton Trans; 2017 Nov; 46(45):15719-15726. PubMed ID: 29095446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maximizing Oxygen Evolution Performance on a Transparent NiFeO
    Kawase Y; Higashi T; Katayama M; Domen K; Takanabe K
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16317-16325. PubMed ID: 33797878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sol-Gel-Derived Ordered Mesoporous High Entropy Spinel Ferrites and Assessment of Their Photoelectrochemical and Electrocatalytic Water Splitting Performance.
    Einert M; Waheed A; Lauterbach S; Mellin M; Rohnke M; Wagner LQ; Gallenberger J; Tian C; Smarsly BM; Jaegermann W; Hess F; Schlaad H; Hofmann JP
    Small; 2023 Apr; 19(14):e2205412. PubMed ID: 36653934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermodynamic and Kinetic Influence of Oxygen Vacancies on the Solar Water Oxidation Reaction of α-Fe
    Yang Q; Du J; Li J; Wu Y; Zhou Y; Yang Y; Yang D; He H
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11625-11634. PubMed ID: 32073812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategies for Semiconductor/Electrocatalyst Coupling toward Solar-Driven Water Splitting.
    Thalluri SM; Bai L; Lv C; Huang Z; Hu X; Liu L
    Adv Sci (Weinh); 2020 Mar; 7(6):1902102. PubMed ID: 32195077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoelectrochemical devices for solar water splitting - materials and challenges.
    Jiang C; Moniz SJA; Wang A; Zhang T; Tang J
    Chem Soc Rev; 2017 Jul; 46(15):4645-4660. PubMed ID: 28644493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CuO-Functionalized Silicon Photoanodes for Photoelectrochemical Water Splitting Devices.
    Shi Y; Gimbert-Suriñach C; Han T; Berardi S; Lanza M; Llobet A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):696-702. PubMed ID: 26651152
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes.
    Lin F; Boettcher SW
    Nat Mater; 2014 Jan; 13(1):81-6. PubMed ID: 24292419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of nanoparticulate PdO co-catalysts on the faradaic and light conversion efficiency of WO
    Wilson AA; Corby S; Francàs L; Durrant JR; Kafizas A
    Phys Chem Chem Phys; 2021 Jan; 23(2):1285-1291. PubMed ID: 33367408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution.
    Fu Y; Dong CL; Zhou Z; Lee WY; Chen J; Guo P; Zhao L; Shen S
    Phys Chem Chem Phys; 2016 Feb; 18(5):3846-53. PubMed ID: 26763113
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting.
    Nellist MR; Laskowski FA; Lin F; Mills TJ; Boettcher SW
    Acc Chem Res; 2016 Apr; 49(4):733-40. PubMed ID: 27035051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid Microwave Annealing Synthesizes Highly Crystalline Nanostructures for (Photo)electrocatalytic Water Splitting.
    Zhang H; Lee JS
    Acc Chem Res; 2019 Nov; 52(11):3132-3142. PubMed ID: 31603645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoelectrochemical water oxidation efficiency of a core/shell array photoanode enhanced by a dual suppression strategy.
    He W; Yang Y; Wang L; Yang J; Xiang X; Yan D; Li F
    ChemSusChem; 2015 May; 8(9):1568-76. PubMed ID: 25711390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PRED treatment mediated stable and efficient water oxidation performance of the Fe2O3 nano-coral structure.
    Shinde PS; Lee HH; Lee SY; Lee YM; Jang JS
    Nanoscale; 2015 Sep; 7(36):14906-13. PubMed ID: 26300305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes.
    Zhong DK; Sun J; Inumaru H; Gamelin DR
    J Am Chem Soc; 2009 May; 131(17):6086-7. PubMed ID: 19354283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exposure of WO3 Photoanodes to Ultraviolet Light Enhances Photoelectrochemical Water Oxidation.
    Li T; He J; Peña B; Berlinguette CP
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25010-3. PubMed ID: 27644107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Piezotronic-Enhanced Photoelectrochemical Reactions in Ni(OH)2-Decorated ZnO Photoanodes.
    Li H; Yu Y; Starr MB; Li Z; Wang X
    J Phys Chem Lett; 2015 Sep; 6(17):3410-6. PubMed ID: 26279397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Copper(II) tungstate nanoflake array films: sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting.
    Hu D; Diao P; Xu D; Xia M; Gu Y; Wu Q; Li C; Yang S
    Nanoscale; 2016 Mar; 8(11):5892-901. PubMed ID: 26912373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.