BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 27142852)

  • 1. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.
    Stępiński D
    Histochem Cell Biol; 2016 Aug; 146(2):119-39. PubMed ID: 27142852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribosomal Proteins Control or Bypass p53 during Nucleolar Stress.
    Russo A; Russo G
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28085118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of RRP15 in nucleolar formation, ribosome biogenesis and checkpoint control in human cells.
    Dong Z; Zhu C; Zhan Q; Jiang W
    Oncotarget; 2017 Feb; 8(8):13240-13252. PubMed ID: 28099941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nucleolus, an ally, and an enemy of cancer cells.
    Stępiński D
    Histochem Cell Biol; 2018 Dec; 150(6):607-629. PubMed ID: 30105457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new PICTure of nucleolar stress.
    Suzuki A; Kogo R; Kawahara K; Sasaki M; Nishio M; Maehama T; Sasaki T; Mimori K; Mori M
    Cancer Sci; 2012 Apr; 103(4):632-7. PubMed ID: 22320853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy.
    Woods SJ; Hannan KM; Pearson RB; Hannan RD
    Biochim Biophys Acta; 2015 Jul; 1849(7):821-9. PubMed ID: 25464032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleolar stress with and without p53.
    James A; Wang Y; Raje H; Rosby R; DiMario P
    Nucleus; 2014; 5(5):402-26. PubMed ID: 25482194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses.
    Ohbayashi I; Sugiyama M
    Front Plant Sci; 2017; 8():2247. PubMed ID: 29375613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional ribosome biogenesis is a prerequisite for p53 destabilization: impact of chemotherapy on nucleolar functions and RNA metabolism.
    Burger K; Eick D
    Biol Chem; 2013 Sep; 394(9):1133-43. PubMed ID: 23640940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleolar protein GLTSCR2 stabilizes p53 in response to ribosomal stresses.
    Lee S; Kim JY; Kim YJ; Seok KO; Kim JH; Chang YJ; Kang HY; Park JH
    Cell Death Differ; 2012 Oct; 19(10):1613-22. PubMed ID: 22522597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction.
    Fumagalli S; Di Cara A; Neb-Gulati A; Natt F; Schwemberger S; Hall J; Babcock GF; Bernardi R; Pandolfi PP; Thomas G
    Nat Cell Biol; 2009 Apr; 11(4):501-8. PubMed ID: 19287375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting the nucleolus for cancer-specific activation of p53.
    Drygin D; O'Brien SE; Hannan RD; McArthur GA; Von Hoff DD
    Drug Discov Today; 2014 Mar; 19(3):259-65. PubMed ID: 23993916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear stabilization of p53 requires a functional nucleolar surveillance pathway.
    Hannan KM; Soo P; Wong MS; Lee JK; Hein N; Poh P; Wysoke KD; Williams TD; Montellese C; Smith LK; Al-Obaidi SJ; Núñez-Villacís L; Pavy M; He JS; Parsons KM; Loring KE; Morrison T; Diesch J; Burgio G; Ferreira R; Feng ZP; Gould CM; Madhamshettiwar PB; Flygare J; Gonda TJ; Simpson KJ; Kutay U; Pearson RB; Engel C; Watkins NJ; Hannan RD; George AJ
    Cell Rep; 2022 Nov; 41(5):111571. PubMed ID: 36323262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function.
    Korgaonkar C; Hagen J; Tompkins V; Frazier AA; Allamargot C; Quelle FW; Quelle DE
    Mol Cell Biol; 2005 Feb; 25(4):1258-71. PubMed ID: 15684379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PML regulates p53 stability by sequestering Mdm2 to the nucleolus.
    Bernardi R; Scaglioni PP; Bergmann S; Horn HF; Vousden KH; Pandolfi PP
    Nat Cell Biol; 2004 Jul; 6(7):665-72. PubMed ID: 15195100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis.
    Bursac S; Brdovcak MC; Donati G; Volarevic S
    Biochim Biophys Acta; 2014 Jun; 1842(6):817-30. PubMed ID: 24514102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses.
    Rubbi CP; Milner J
    EMBO J; 2003 Nov; 22(22):6068-77. PubMed ID: 14609953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleolar stress: Molecular mechanisms and related human diseases.
    Maehama T; Nishio M; Otani J; Mak TW; Suzuki A
    Cancer Sci; 2023 May; 114(5):2078-2086. PubMed ID: 36762786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleolus and Nucleolar Stress: From Cell Fate Decision to Disease Development.
    Hua L; Yan D; Wan C; Hu B
    Cells; 2022 Sep; 11(19):. PubMed ID: 36230979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress.
    Sloan KE; Bohnsack MT; Watkins NJ
    Cell Rep; 2013 Oct; 5(1):237-47. PubMed ID: 24120868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.