BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 27142980)

  • 1. Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation.
    Chappell JC; Cluceru JG; Nesmith JE; Mouillesseaux KP; Bradley VB; Hartland CM; Hashambhoy-Ramsay YL; Walpole J; Peirce SM; Mac Gabhann F; Bautch VL
    Cardiovasc Res; 2016 Jul; 111(1):84-93. PubMed ID: 27142980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flt-1 (vascular endothelial growth factor receptor-1) is essential for the vascular endothelial growth factor-Notch feedback loop during angiogenesis.
    Chappell JC; Mouillesseaux KP; Bautch VL
    Arterioscler Thromb Vasc Biol; 2013 Aug; 33(8):1952-9. PubMed ID: 23744993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The VEGF receptor flt-1 (VEGFR-1) is a positive modulator of vascular sprout formation and branching morphogenesis.
    Kearney JB; Kappas NC; Ellerstrom C; DiPaola FW; Bautch VL
    Blood; 2004 Jun; 103(12):4527-35. PubMed ID: 14982871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local guidance of emerging vessel sprouts requires soluble Flt-1.
    Chappell JC; Taylor SM; Ferrara N; Bautch VL
    Dev Cell; 2009 Sep; 17(3):377-86. PubMed ID: 19758562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The vascular endothelial growth factor (VEGF) receptor Flt-1 (VEGFR-1) modulates Flk-1 (VEGFR-2) signaling during blood vessel formation.
    Roberts DM; Kearney JB; Johnson JH; Rosenberg MP; Kumar R; Bautch VL
    Am J Pathol; 2004 May; 164(5):1531-5. PubMed ID: 15111299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligand suggests a paracrine regulation of murine vascular development.
    Breier G; Clauss M; Risau W
    Dev Dyn; 1995 Nov; 204(3):228-39. PubMed ID: 8573716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood vessel anastomosis is spatially regulated by Flt1 during angiogenesis.
    Nesmith JE; Chappell JC; Cluceru JG; Bautch VL
    Development; 2017 Mar; 144(5):889-896. PubMed ID: 28246215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The VEGF receptor Flt-1 spatially modulates Flk-1 signaling and blood vessel branching.
    Kappas NC; Zeng G; Chappell JC; Kearney JB; Hazarika S; Kallianos KG; Patterson C; Annex BH; Bautch VL
    J Cell Biol; 2008 Jun; 181(5):847-58. PubMed ID: 18504303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased Expression of Vascular Endothelial Growth Factor Receptor 1 Contributes to the Pathogenesis of Hereditary Hemorrhagic Telangiectasia Type 2.
    Thalgott JH; Dos-Santos-Luis D; Hosman AE; Martin S; Lamandé N; Bracquart D; Srun S; Galaris G; de Boer HC; Tual-Chalot S; Kroon S; Arthur HM; Cao Y; Snijder RJ; Disch F; Mager JJ; Rabelink TJ; Mummery CL; Raymond K; Lebrin F
    Circulation; 2018 Dec; 138(23):2698-2712. PubMed ID: 30571259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of embryonic lung vascular development by vascular endothelial growth factor receptors, Flk-1 and Flt-1.
    Yamamoto Y; Shiraishi I; Dai P; Hamaoka K; Takamatsu T
    Anat Rec (Hoboken); 2007 Aug; 290(8):958-73. PubMed ID: 17654674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased angiogenesis and expression of vascular endothelial growth factor during scarless repair.
    Colwell AS; Beanes SR; Soo C; Dang C; Ting K; Longaker MT; Atkinson JB; Lorenz HP
    Plast Reconstr Surg; 2005 Jan; 115(1):204-12. PubMed ID: 15622252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic alterations in decoy VEGF receptor-1 stability regulate angiogenesis.
    Boucher JM; Clark RP; Chong DC; Citrin KM; Wylie LA; Bautch VL
    Nat Commun; 2017 Jun; 8():15699. PubMed ID: 28589930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis.
    Ruhrberg C; Gerhardt H; Golding M; Watson R; Ioannidou S; Fujisawa H; Betsholtz C; Shima DT
    Genes Dev; 2002 Oct; 16(20):2684-98. PubMed ID: 12381667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo.
    Krueger J; Liu D; Scholz K; Zimmer A; Shi Y; Klein C; Siekmann A; Schulte-Merker S; Cudmore M; Ahmed A; le Noble F
    Development; 2011 May; 138(10):2111-20. PubMed ID: 21521739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of normal and pathological blood vessel morphogenesis in Flt1-tdsRed BAC Tg mice.
    Matsumoto K; Azami T; Otsu A; Takase H; Ishitobi H; Tanaka J; Miwa Y; Takahashi S; Ema M
    Genesis; 2012 Jul; 50(7):561-71. PubMed ID: 22489010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A role for VEGF as a negative regulator of pericyte function and vessel maturation.
    Greenberg JI; Shields DJ; Barillas SG; Acevedo LM; Murphy E; Huang J; Scheppke L; Stockmann C; Johnson RS; Angle N; Cheresh DA
    Nature; 2008 Dec; 456(7223):809-13. PubMed ID: 18997771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shb promotes blood vessel formation in embryoid bodies by augmenting vascular endothelial growth factor receptor-2 and platelet-derived growth factor receptor-beta signaling.
    Rolny C; Lu L; Agren N; Nilsson I; Roe C; Webb GC; Welsh M
    Exp Cell Res; 2005 Aug; 308(2):381-93. PubMed ID: 15919073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soluble Flt-1 regulates Flk-1 activation to control hematopoietic and endothelial development in an oxygen-responsive manner.
    Purpura KA; George SH; Dang SM; Choi K; Nagy A; Zandstra PW
    Stem Cells; 2008 Nov; 26(11):2832-42. PubMed ID: 18772315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1.
    Eilken HM; Diéguez-Hurtado R; Schmidt I; Nakayama M; Jeong HW; Arf H; Adams S; Ferrara N; Adams RH
    Nat Commun; 2017 Nov; 8(1):1574. PubMed ID: 29146905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor neurons control blood vessel patterning in the developing spinal cord.
    Himmels P; Paredes I; Adler H; Karakatsani A; Luck R; Marti HH; Ermakova O; Rempel E; Stoeckli ET; Ruiz de Almodóvar C
    Nat Commun; 2017 Mar; 8():14583. PubMed ID: 28262664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.