These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27143564)

  • 1. Experimental evidence for thermal generation of interstitials in a metallic crystal near the melting temperature.
    Safonova EV; Mitrofanov YP; Konchakov RA; Yu Vinogradov A; Kobelev NP; Khonik VA
    J Phys Condens Matter; 2016 Jun; 28(21):215401. PubMed ID: 27143564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple kinetic parameter indicating the origin of the relaxations induced by point(-like) defects in metallic crystals and glasses.
    Makarov AS; Konchakov RA; Mitrofanov YP; Kretova MA; Kobelev NP; Khonik VA
    J Phys Condens Matter; 2020 Nov; 32(49):495701. PubMed ID: 32914756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interstitial clustering in metallic systems as a source for the formation of the icosahedral matrix and defects in the glassy state.
    Konchakov RA; Makarov AS; Kobelev NP; Glezer AM; Wilde G; Khonik VA
    J Phys Condens Matter; 2019 Sep; 31(38):385703. PubMed ID: 31195372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vacancies and interstitials in yttrium.
    Borodin VA; Vladimirov PV
    J Phys Condens Matter; 2019 May; 31(18):185401. PubMed ID: 30690435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation free energies of point defects and thermal expansion of bcc U and Mo.
    Smirnov GS; Stegailov VV
    J Phys Condens Matter; 2019 Jun; 31(23):235704. PubMed ID: 30849770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of interstitial-like defects in a computer model of glassy aluminum.
    Goncharova EV; Konchakov RA; Makarov AS; Kobelev NP; Khonik VA
    J Phys Condens Matter; 2017 Aug; 29(30):305701. PubMed ID: 28556782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of distributed interstitialcy-like relaxation of the shear modulus due to structural relaxation of metallic glasses.
    Khonik SV; Granato AV; Joncich DM; Pompe A; Khonik VA
    Phys Rev Lett; 2008 Feb; 100(6):065501. PubMed ID: 18352488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of intrinsic defects on the properties of zinc oxide.
    Jug K; Tikhomirov VA
    J Comput Chem; 2008 Oct; 29(13):2250-4. PubMed ID: 18473321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab Initio Thermodynamics of Oxygen Vacancies and Zinc Interstitials in ZnO.
    Bjørheim TS; Kotomin E
    J Phys Chem Lett; 2014 Dec; 5(24):4238-42. PubMed ID: 26273968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion and interactions of point defects in hard-sphere crystals.
    van der Meer B; Dijkstra M; Filion L
    J Chem Phys; 2017 Jun; 146(24):244905. PubMed ID: 28668026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the nature of the shear viscosity and shear modulus relaxation in metallic glasses.
    Tsyplakov AN; Khonik VA; Makarov AS; Mitrofanov YP; Afonin GV; Kobelev NP; Konchakov RA; Lysenko AV
    J Phys Condens Matter; 2013 Aug; 25(34):345402. PubMed ID: 23899581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defect-induced homogeneous amorphization of silicon: the role of defect structure and population.
    Lulli G; Albertazzi E; Balboni S; Colombo L
    J Phys Condens Matter; 2006 Feb; 18(6):2077-88. PubMed ID: 21697576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotational defects in cyclotrimethylene trinitramine (RDX) crystals.
    Pal A; Picu RC
    J Chem Phys; 2014 Jan; 140(4):044512. PubMed ID: 25669560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Thermal Vacancy on Thermodynamic Behaviors in BCC W Close to Melting Point: A Thermodynamic Study.
    Tang Y; Zhang L
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30205442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How superheated crystals melt.
    Forsblom M; Grimvall G
    Nat Mater; 2005 May; 4(5):388-90. PubMed ID: 15852020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single and paired point defects in a 2D Wigner crystal.
    Cândido L; Phillips P; Ceperley DM
    Phys Rev Lett; 2001 Jan; 86(3):492-5. PubMed ID: 11177863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the Gibbs Free Energy Changes and Melting Temperatures of DNA/DNA Duplexes Using Hybridization Enthalpy Calculated by Molecular Dynamics Simulation.
    Lomzov AA; Vorobjev YN; Pyshnyi DV
    J Phys Chem B; 2015 Dec; 119(49):15221-34. PubMed ID: 26569147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilities and defect-mediated lithium-ion conduction in a ground state cubic Li3N structure.
    Nguyen MC; Hoang K; Wang CZ; Ho KM
    Phys Chem Chem Phys; 2016 Feb; 18(5):4185-90. PubMed ID: 26785086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Ideal glassformers" vs "ideal glasses": studies of crystal-free routes to the glassy state by "potential tuning" molecular dynamics, and laboratory calorimetry.
    Kapko V; Zhao Z; Matyushov DV; Austen Angell C
    J Chem Phys; 2013 Mar; 138(12):12A549. PubMed ID: 23556800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The thermal expansion of gold: point defect concentrations and pre-melting in a face-centred cubic metal.
    Pamato MG; Wood IG; Dobson DP; Hunt SA; Vočadlo L
    J Appl Crystallogr; 2018 Apr; 51(Pt 2):470-480. PubMed ID: 29657568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.