These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 2714410)

  • 1. Local variation in absolute water content of human and rabbit eye lenses measured by Raman microspectroscopy.
    Huizinga A; Bot AC; de Mul FF; Vrensen GF; Greve J
    Exp Eye Res; 1989 Apr; 48(4):487-96. PubMed ID: 2714410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman microspectroscopy of fixed rabbit and human lenses and lens slices: new potentialities.
    Bot AC; Huizinga A; de Mul FF; Vrensen GF; Greve J
    Exp Eye Res; 1989 Aug; 49(2):161-9. PubMed ID: 2767164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An application of laser Raman spectroscopy to the study of a hereditary cataractous lens; on the Raman band for a diagnostic marker of cataractous signatures.
    Iriyama K; Mizuno A; Ozaki Y; Itoh K; Matsuzaki H
    Curr Eye Res; 1982-1983; 2(7):489-92. PubMed ID: 7182109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione levels in human lens: regional distribution in different forms of cataract.
    Pau H; Graf P; Sies H
    Exp Eye Res; 1990 Jan; 50(1):17-20. PubMed ID: 2307192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ageing and changes in protein conformation in the human lens: a Raman microspectroscopic study.
    Siebinga I; Vrensen GF; Otto K; Puppels GJ; De Mul FF; Greve J
    Exp Eye Res; 1992 May; 54(5):759-67. PubMed ID: 1623961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyridine nucleotides in normal and cataractous human lenses.
    Stewart A; Augusteyn RC
    Exp Eye Res; 1984 Sep; 39(3):307-15. PubMed ID: 6499953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectra of normal and ultraviolet-induced cataractous rabbit lens.
    Thomas DM; Schepler KL
    Invest Ophthalmol Vis Sci; 1980 Aug; 19(8):904-12. PubMed ID: 7409985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related changes in local water and protein content of human eye lenses measured by Raman microspectroscopy.
    Siebinga I; Vrensen GF; De Mul FF; Greve J
    Exp Eye Res; 1991 Aug; 53(2):233-9. PubMed ID: 1915680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of the total and non-freezable water in rat lenses.
    Castoro JA; Bettelheim FA
    Exp Eye Res; 1986 Aug; 43(2):185-91. PubMed ID: 3758218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined elastic and Raman light scattering of human eye lenses.
    Yaroslavsky IV; Yaroslavsky AN; Otto C; Puppels GJ; Vrensen GF; Duindam H; Greve J
    Exp Eye Res; 1994 Oct; 59(4):393-9. PubMed ID: 7859814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Water exchange in human crystalline lens studied by combined dispersion confocal microspectroscopy].
    Iaroslavskaia AN; Iaroslavskiĭ IV; Otto C; Puppels GJ; Duindam H; Vrensen GF; Greve J; Tuchin VV
    Biofizika; 1998; 43(1):125-30. PubMed ID: 9567186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in proportion and molecular weight of native crystallins from single human lenses upon aging and formation of nuclear cataract.
    Bessems GJ; Hoenders HJ; Wollensak J
    Exp Eye Res; 1983 Dec; 37(6):627-37. PubMed ID: 6662209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane cholesterol and phospholipid in consecutive concentric sections of human lenses.
    Li LK; So L; Spector A
    J Lipid Res; 1985 May; 26(5):600-9. PubMed ID: 4020298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relation between local acoustic parameters and protein distribution in human and porcine eye lenses.
    De Korte CL; Van Der Steen AF; Thijssen JM; Duindam JJ; Otto C; Puppels GJ
    Exp Eye Res; 1994 Nov; 59(5):617-27. PubMed ID: 9492763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential scanning calorimetric measurements on human lenses.
    Bettelheim FA; Christian S; Lee LK
    Curr Eye Res; 1982-1983; 2(12):803-8. PubMed ID: 7187637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local variations in protein structure in the human eye lens: a Raman microspectroscopic study.
    Smeets MH; Vrensen GF; Otto K; Puppels GJ; Greve J
    Biochim Biophys Acta; 1993 Aug; 1164(3):236-42. PubMed ID: 8343523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein profiles in cortical and nuclear regions of aged human donor lenses: A confocal Raman microspectroscopic and imaging study.
    Vrensen GFJM; Otto C; Lenferink A; Liszka B; Montenegro GA; Barraquer RI; Michael R
    Exp Eye Res; 2016 Apr; 145():100-109. PubMed ID: 26611157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparative study of crystallins from the nucleus and cortex of the bovine ocular lens by the gel filtration and x-ray diffraction methods].
    Krivandin AV; L'vov IuM; Ostrovskiĭ MA; Fedorovich IB; Feĭgin LA
    Biofizika; 1985; 30(1):107-11. PubMed ID: 3978131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freezable and non-freezable water content of cataractous human lenses.
    Bettelheim FA; Ali S; White O; Chylack LT
    Invest Ophthalmol Vis Sci; 1986 Jan; 27(1):122-5. PubMed ID: 3941033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the state and content of water in normal avian, fish, porcine, bovine, and human lenses as studied by differential scanning calorimetry.
    Lundgren CH; Williams TR; Nunnari JM
    Ophthalmic Res; 1986; 18(2):90-7. PubMed ID: 3737118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.