BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27144173)

  • 1. Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds.
    Liu T; Wu P; Gao C; Feng P; Xiao T; Deng Y; Shuai C; Peng S
    Biomed Res Int; 2016; 2016():7090635. PubMed ID: 27144173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical reinforcement of diopside bone scaffolds with carbon nanotubes.
    Shuai C; Liu T; Gao C; Feng P; Peng S
    Int J Mol Sci; 2014 Oct; 15(10):19319-29. PubMed ID: 25342324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite-polyetheretherketone scaffolds.
    Feng P; Peng S; Wu P; Gao C; Huang W; Deng Y; Xiao T; Shuai C
    Int J Nanomedicine; 2016; 11():3487-500. PubMed ID: 27555770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility and bioactivity of hardystonite-based nanocomposite scaffold for tissue engineering applications.
    Hamvar M; Bakhsheshi-Rad HR; Omidi M; Ismail AF; Aziz M; Berto F; Chen X
    Biomed Phys Eng Express; 2020 Mar; 6(3):035011. PubMed ID: 33438656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotubes reinforced poly(L-lactide) scaffolds fabricated by thermally induced phase separation.
    Ma H; Xue L
    Nanotechnology; 2015 Jan; 26(2):025701. PubMed ID: 25525708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration.
    Silva E; Vasconcellos LMR; Rodrigues BVM; Dos Santos DM; Campana-Filho SP; Marciano FR; Webster TJ; Lobo AO
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():31-39. PubMed ID: 28183613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous diopside (CaMgSi(2)O(6)) scaffold: A promising bioactive material for bone tissue engineering.
    Wu C; Ramaswamy Y; Zreiqat H
    Acta Biomater; 2010 Jun; 6(6):2237-45. PubMed ID: 20018260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological and mechanical evaluation of poly(lactic-co-glycolic acid)-based composites reinforced with 1D, 2D and 3D carbon biomaterials for bone tissue regeneration.
    Kaur T; Kulanthaivel S; Thirugnanam A; Banerjee I; Pramanik K
    Biomed Mater; 2017 Mar; 12(2):025012. PubMed ID: 28181476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction.
    Dorj B; Won JE; Kim JH; Choi SJ; Shin US; Kim HW
    J Biomed Mater Res A; 2013 Jun; 101(6):1670-81. PubMed ID: 23184729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications.
    Pon-On W; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Krishnamra N; Tang IM
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():63-72. PubMed ID: 24656353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoporous diopside modulates biocompatibility, degradability and osteogenesis of bioactive scaffolds of gliadin-based composites for new bone formation.
    Ba Z; Chen Z; Huang Y; Feng D; Zhao Q; Zhu J; Wu D
    Int J Nanomedicine; 2018; 13():3883-3896. PubMed ID: 30013342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering biomimetic scaffolds for bone regeneration: Chitosan/alginate/polyvinyl alcohol-based double-network hydrogels with carbon nanomaterials.
    Seifi S; Shamloo A; Barzoki AK; Bakhtiari MA; Zare S; Cheraghi F; Peyrovan A
    Carbohydr Polym; 2024 Sep; 339():122232. PubMed ID: 38823905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds.
    Chen QZ; Thouas GA
    Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymeric composites containing carbon nanotubes for bone tissue engineering.
    Sahithi K; Swetha M; Ramasamy K; Srinivasan N; Selvamurugan N
    Int J Biol Macromol; 2010 Apr; 46(3):281-3. PubMed ID: 20093139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of doping in carbon nanotubes on the viability of biomimetic chitosan-carbon nanotubes-hydroxyapatite scaffolds.
    Fonseca-García A; Mota-Morales JD; Quintero-Ortega IA; García-Carvajal ZY; Martínez-López V; Ruvalcaba E; Landa-Solís C; Solis L; Ibarra C; Gutiérrez MC; Terrones M; Sanchez IC; del Monte F; Velasquillo MC; Luna-Bárcenas G
    J Biomed Mater Res A; 2014 Oct; 102(10):3341-51. PubMed ID: 23894015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vitro and in Vivo Studies of Novel Poly(D,L-lactic acid), Superhydrophilic Carbon Nanotubes, and Nanohydroxyapatite Scaffolds for Bone Regeneration.
    Siqueira IA; Corat MA; Cavalcanti Bd; Ribeiro Neto WA; Martin AA; Bretas RE; Marciano FR; Lobo AO
    ACS Appl Mater Interfaces; 2015 May; 7(18):9385-98. PubMed ID: 25899398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds.
    Park S; Park J; Jo I; Cho SP; Sung D; Ryu S; Park M; Min KA; Kim J; Hong S; Hong BH; Kim BS
    Biomaterials; 2015 Jul; 58():93-102. PubMed ID: 25941786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies.
    Xu M; Zhai D; Chang J; Wu C
    Acta Biomater; 2014 Jan; 10(1):463-76. PubMed ID: 24071000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyapatite grafted carbon nanotubes and graphene nanosheets: promising bone implant materials.
    Oyefusi A; Olanipekun O; Neelgund GM; Peterson D; Stone JM; Williams E; Carson L; Regisford G; Oki A
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():410-6. PubMed ID: 24892524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the composition-structure-bioactivity relationships in diopside (CaO·MgO·2SiO₂)-tricalcium phosphate (3CaO·P₂O₅) glass system.
    Kapoor S; Semitela Â; Goel A; Xiang Y; Du J; Lourenço AH; Sousa DM; Granja PL; Ferreira JM
    Acta Biomater; 2015 Mar; 15():210-26. PubMed ID: 25578990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.