BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27144600)

  • 1. Distribution and Localised Effects of the Invasive Ascidian Didemnum perlucidum (Monniot 1983) in an Urban Estuary.
    Simpson TS; Wernberg T; McDonald JI
    PLoS One; 2016; 11(5):e0154201. PubMed ID: 27144600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time PCR detection of Didemnum perlucidum (Monniot, 1983) and Didemnum vexillum (Kott, 2002) in an applied routine marine biosecurity context.
    Simpson TJS; Dias PJ; Snow M; Muñoz J; Berry T
    Mol Ecol Resour; 2017 May; 17(3):443-453. PubMed ID: 27483456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root microbiomes as indicators of seagrass health.
    Martin BC; Alarcon MS; Gleeson D; Middleton JA; Fraser MW; Ryan MH; Holmer M; Kendrick GA; Kilminster K
    FEMS Microbiol Ecol; 2020 Feb; 96(2):. PubMed ID: 31841144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marine aquaculture as a source of propagules of invasive fouling species.
    Lins DM; Rocha RM
    PeerJ; 2023; 11():e15456. PubMed ID: 37334117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal dynamics of trace elements in sediment and seagrass tissues in the largest Zostera japonica habitat, the Yellow River Estuary, northern China.
    Lin H; Sun T; Adams MP; Zhou Y; Zhang X; Xu S; Gu R
    Mar Pollut Bull; 2018 Sep; 134():5-13. PubMed ID: 29534833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal concentrations in seagrass (Halophila ovalis) tissue and ambient sediment in a highly modified estuarine environment (Sydney estuary, Australia).
    Birch GF; Cox BM; Besley CH
    Mar Pollut Bull; 2018 Jun; 131(Pt A):130-141. PubMed ID: 29886929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ascidian recruitment patterns on an artificial reef in Eilat (Red Sea).
    Shenkar N; Zeldman Y; Loya Y
    Biofouling; 2008; 24(2):119-28. PubMed ID: 18256965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positive effects of high salinity can buffer the negative effects of experimental warming on functional traits of the seagrass Halophila ovalis.
    Ontoria Y; Webster C; Said N; Ruiz JM; Pérez M; Romero J; McMahon K
    Mar Pollut Bull; 2020 Sep; 158():111404. PubMed ID: 32753189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two tropical seagrass species show differing indicators of resistance to a marine heatwave.
    Bass AV; Falkenberg LJ
    Ecol Evol; 2023 Jul; 13(7):e10304. PubMed ID: 37456075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased extent of waterfowl grazing lengthens the recovery time of a colonizing seagrass (
    O'Dea CM; Lavery PS; Webster CL; McMahon KM
    Front Plant Sci; 2022; 13():947109. PubMed ID: 36105704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Monthly changes in the benthic macro-invertebrate community structure in the habitats of Phragmites australis marsh in the Dongtan wetland of the Yangtze River estuary, China].
    Zhang H; Ye JY; Liang XL; Zhu XJ; Jin SF; Chen YG; Zhang JR; Dai Y
    Ying Yong Sheng Tai Xue Bao; 2017 Apr; 28(4):1360-1369. PubMed ID: 29741335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cumulative effects of multiple stressors impact an endangered seagrass population and fish communities.
    Rees MJ; Knott NA; Astles KL; Swadling DS; West GJ; Ferguson AM; Delamont J; Gibson PT; Neilson J; Birch GF; Glasby TM
    Sci Total Environ; 2023 Dec; 904():166706. PubMed ID: 37659560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal spatial variation, bioaccumulation, and risk assessment of Zostera japonica habitat in the Yellow River Estuary, China.
    Lin H; Sun T; Xue S; Jiang X
    Sci Total Environ; 2016 Jan; 541():435-443. PubMed ID: 26410718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of interactions between macroalgae and seagrass on the distribution of macrobenthic invertebrate communities at the Yellow River Estuary, China.
    Wang X; Yan J; Bai J; Shao D; Cui B
    Mar Pollut Bull; 2021 Mar; 164():112057. PubMed ID: 33515816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species.
    Hernán G; Ortega MJ; Gándara AM; Castejón I; Terrados J; Tomas F
    Glob Chang Biol; 2017 Nov; 23(11):4530-4543. PubMed ID: 28544549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal heterogeneity provides a niche opportunity for ascidian invasion in subtropical marine communities.
    Astudillo JC; Leung KM; Bonebrake TC
    Mar Environ Res; 2016 Dec; 122():1-10. PubMed ID: 27642109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of the non-acidic chemically mediated antifoulant properties of three sympatric species of ascidians associated with seagrass habitats.
    Bryan PJ; McClintock JB; Slattery M; Rittschof DP
    Biofouling; 2003 Aug; 19(4):235-45. PubMed ID: 14626843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of anthropogenic pressures on the seagrass Halophila stipulacea and its associated macrozoobenthic communities in the northern Gulf of Aqaba.
    Nguyen HM; Andolina C; Vizzini S; Gambi MC; Winters G
    Mar Environ Res; 2023 Jul; 189():106073. PubMed ID: 37413952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trace element content of seagrasses in the Leschenault Estuary, Western Australia.
    Kilminster K
    Mar Pollut Bull; 2013 Aug; 73(1):381-8. PubMed ID: 23796666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of the ichthyofauna of a temperate microtidal estuary with a reverse salinity gradient, including inter-decadal comparisons.
    Veale L; Tweedley JR; Clarke KR; Hallett CS; Potter IC
    J Fish Biol; 2014 Nov; 85(5):1320-54. PubMed ID: 25163825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.