These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
454 related articles for article (PubMed ID: 27144717)
21. Occipital-parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity. Indovina I; Macaluso E Magn Reson Imaging; 2004 Dec; 22(10):1477-86. PubMed ID: 15707797 [TBL] [Abstract][Full Text] [Related]
22. Alpha-power modulation reflects the balancing of task requirements in a selective attention task. Limbach K; Corballis PM Psychophysiology; 2017 Feb; 54(2):224-234. PubMed ID: 27717054 [TBL] [Abstract][Full Text] [Related]
23. Using Partial Directed Coherence to Study Alpha-Band Effective Brain Networks during a Visuospatial Attention Task. Zhao Z; Wang C Behav Neurol; 2019; 2019():1410425. PubMed ID: 31565094 [TBL] [Abstract][Full Text] [Related]
24. The temporal dynamics of the effects in occipital cortex of visual-spatial selective attention. Woldorff MG; Liotti M; Seabolt M; Busse L; Lancaster JL; Fox PT Brain Res Cogn Brain Res; 2002 Dec; 15(1):1-15. PubMed ID: 12433379 [TBL] [Abstract][Full Text] [Related]
25. Oscillatory alpha-band mechanisms and the deployment of spatial attention to anticipated auditory and visual target locations: supramodal or sensory-specific control mechanisms? Banerjee S; Snyder AC; Molholm S; Foxe JJ J Neurosci; 2011 Jul; 31(27):9923-32. PubMed ID: 21734284 [TBL] [Abstract][Full Text] [Related]
26. Topographic specificity of alpha power during auditory spatial attention. Deng Y; Choi I; Shinn-Cunningham B Neuroimage; 2020 Feb; 207():116360. PubMed ID: 31760150 [TBL] [Abstract][Full Text] [Related]
27. Cortical and Subcortical Coordination of Visual Spatial Attention Revealed by Simultaneous EEG-fMRI Recording. Green JJ; Boehler CN; Roberts KC; Chen LC; Krebs RM; Song AW; Woldorff MG J Neurosci; 2017 Aug; 37(33):7803-7810. PubMed ID: 28698387 [TBL] [Abstract][Full Text] [Related]
28. Transcranial Alternating Current Stimulation over Frontal Eye Fields Mimics Attentional Modulation of Visual Processing. Misselhorn J; Fiene M; Radecke JO; Engel AK; Schneider TR J Neurosci; 2024 Jun; 44(25):. PubMed ID: 38729759 [TBL] [Abstract][Full Text] [Related]
29. Normal aging selectively diminishes alpha lateralization in visual spatial attention. Hong X; Sun J; Bengson JJ; Mangun GR; Tong S Neuroimage; 2015 Feb; 106():353-63. PubMed ID: 25463457 [TBL] [Abstract][Full Text] [Related]
30. Oscillatory recruitment of bilateral visual cortex during spatial attention to competing rhythmic inputs. Gray MJ; Frey HP; Wilson TJ; Foxe JJ J Neurosci; 2015 Apr; 35(14):5489-503. PubMed ID: 25855167 [TBL] [Abstract][Full Text] [Related]
31. Attentional selection of location and modality in vision and touch modulates low-frequency activity in associated sensory cortices. Bauer M; Kennett S; Driver J J Neurophysiol; 2012 May; 107(9):2342-51. PubMed ID: 22323628 [TBL] [Abstract][Full Text] [Related]
32. Backward masked fearful faces enhance contralateral occipital cortical activity for visual targets within the spotlight of attention. Carlson JM; Reinke KS; LaMontagne PJ; Habib R Soc Cogn Affect Neurosci; 2011 Oct; 6(5):639-45. PubMed ID: 20702500 [TBL] [Abstract][Full Text] [Related]
33. Anticipatory alpha oscillation predicts attentional selection and hemodynamic response. Zhao C; Guo J; Li D; Tao Y; Ding Y; Liu H; Song Y Hum Brain Mapp; 2019 Aug; 40(12):3606-3619. PubMed ID: 31062891 [TBL] [Abstract][Full Text] [Related]
34. Frontoparietal Networks Mediate the Behavioral Impact of Alpha Inhibition in Visual Cortex. Wiesman AI; Groff BR; Wilson TW Cereb Cortex; 2019 Jul; 29(8):3505-3513. PubMed ID: 30215685 [TBL] [Abstract][Full Text] [Related]
35. Power and Phase of Alpha Oscillations Reveal an Interaction between Spatial and Temporal Visual Attention. Kizuk SA; Mathewson KE J Cogn Neurosci; 2017 Mar; 29(3):480-494. PubMed ID: 28129063 [TBL] [Abstract][Full Text] [Related]
36. Control mechanisms mediating shifts of attention in auditory and visual space: a spatio-temporal ERP analysis. Green JJ; Teder-Sälejärvi WA; McDonald JJ Exp Brain Res; 2005 Oct; 166(3-4):358-69. PubMed ID: 16075294 [TBL] [Abstract][Full Text] [Related]
37. Involuntary orienting of attention to a sound desynchronizes the occipital alpha rhythm and improves visual perception. Feng W; Störmer VS; Martinez A; McDonald JJ; Hillyard SA Neuroimage; 2017 Apr; 150():318-328. PubMed ID: 28213117 [TBL] [Abstract][Full Text] [Related]
38. Inferior-frontal cortex phase synchronizes with the temporal-parietal junction prior to successful change detection. Micheli C; Kaping D; Westendorff S; Valiante TA; Womelsdorf T Neuroimage; 2015 Oct; 119():417-31. PubMed ID: 26119023 [TBL] [Abstract][Full Text] [Related]
39. Neural Mechanisms of Attentional Control for Objects: Decoding EEG Alpha When Anticipating Faces, Scenes,and Tools. Noah S; Powell T; Khodayari N; Olivan D; Ding M; Mangun GR J Neurosci; 2020 Jun; 40(25):4913-4924. PubMed ID: 32404346 [TBL] [Abstract][Full Text] [Related]
40. The Speed of Alpha-Band Oscillations Predicts the Temporal Resolution of Visual Perception. Samaha J; Postle BR Curr Biol; 2015 Nov; 25(22):2985-90. PubMed ID: 26526370 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]