These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 27144717)

  • 41. Real-time MEG neurofeedback training of posterior alpha activity modulates subsequent visual detection performance.
    Okazaki YO; Horschig JM; Luther L; Oostenveld R; Murakami I; Jensen O
    Neuroimage; 2015 Feb; 107():323-332. PubMed ID: 25514519
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Left parietal tACS at alpha frequency induces a shift of visuospatial attention.
    Schuhmann T; Kemmerer SK; Duecker F; de Graaf TA; Ten Oever S; De Weerd P; Sack AT
    PLoS One; 2019; 14(11):e0217729. PubMed ID: 31774818
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Alpha-Band Oscillations Enable Spatially and Temporally Resolved Tracking of Covert Spatial Attention.
    Foster JJ; Sutterer DW; Serences JT; Vogel EK; Awh E
    Psychol Sci; 2017 Jul; 28(7):929-941. PubMed ID: 28537480
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Frontal and parietal alpha oscillations reflect attentional modulation of cross-modal matching.
    Misselhorn J; Friese U; Engel AK
    Sci Rep; 2019 Mar; 9(1):5030. PubMed ID: 30903012
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Behavioral consequences of aberrant alpha lateralization in attention-deficit/hyperactivity disorder.
    ter Huurne N; Onnink M; Kan C; Franke B; Buitelaar J; Jensen O
    Biol Psychiatry; 2013 Aug; 74(3):227-33. PubMed ID: 23507001
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The strength of anticipatory spatial biasing predicts target discrimination at attended locations: a high-density EEG study.
    Kelly SP; Gomez-Ramirez M; Foxe JJ
    Eur J Neurosci; 2009 Dec; 30(11):2224-34. PubMed ID: 19930401
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation?
    Romei V; Gross J; Thut G
    J Neurosci; 2010 Jun; 30(25):8692-7. PubMed ID: 20573914
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A physiological correlate of the "Zoom Lens" of visual attention.
    Müller NG; Bartelt OA; Donner TH; Villringer A; Brandt SA
    J Neurosci; 2003 May; 23(9):3561-5. PubMed ID: 12736325
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations.
    Gould IC; Rushworth MF; Nobre AC
    J Neurophysiol; 2011 Mar; 105(3):1318-26. PubMed ID: 21228304
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A physiological correlate of the 'spotlight' of visual attention.
    Brefczynski JA; DeYoe EA
    Nat Neurosci; 1999 Apr; 2(4):370-4. PubMed ID: 10204545
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamic activation of frontal, parietal, and sensory regions underlying anticipatory visual spatial attention.
    Simpson GV; Weber DL; Dale CL; Pantazis D; Bressler SL; Leahy RM; Luks TL
    J Neurosci; 2011 Sep; 31(39):13880-9. PubMed ID: 21957250
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Top-down control of visual cortex by the frontal eye fields through oscillatory realignment.
    Veniero D; Gross J; Morand S; Duecker F; Sack AT; Thut G
    Nat Commun; 2021 Mar; 12(1):1757. PubMed ID: 33741947
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Orienting auditory spatial attention engages frontal eye fields and medial occipital cortex in congenitally blind humans.
    Garg A; Schwartz D; Stevens AA
    Neuropsychologia; 2007 Jun; 45(10):2307-21. PubMed ID: 17397882
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neural mechanisms of visual attention: object-based selection of a region in space.
    Arrington CM; Carr TH; Mayer AR; Rao SM
    J Cogn Neurosci; 2000; 12 Suppl 2():106-17. PubMed ID: 11506651
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Top-down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task.
    Haegens S; Händel BF; Jensen O
    J Neurosci; 2011 Apr; 31(14):5197-204. PubMed ID: 21471354
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spatially selective representations of voluntary and stimulus-driven attentional priority in human occipital, parietal, and frontal cortex.
    Serences JT; Yantis S
    Cereb Cortex; 2007 Feb; 17(2):284-93. PubMed ID: 16514108
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms.
    Capotosto P; Babiloni C; Romani GL; Corbetta M
    J Neurosci; 2009 May; 29(18):5863-72. PubMed ID: 19420253
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Object Selection by Automatic Spreading of Top-Down Attentional Signals in V1.
    Ekman M; Roelfsema PR; de Lange FP
    J Neurosci; 2020 Nov; 40(48):9250-9259. PubMed ID: 33087475
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of alpha oscillations in spatial attention: limited evidence for a suppression account.
    Foster JJ; Awh E
    Curr Opin Psychol; 2019 Oct; 29():34-40. PubMed ID: 30472541
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Hemispheric Distribution of α-Band EEG Activity During Orienting of Attention in Patients with Reduced Awareness of the Left Side of Space (Spatial Neglect).
    Lasaponara S; Pinto M; Aiello M; Tomaiuolo F; Doricchi F
    J Neurosci; 2019 May; 39(22):4332-4343. PubMed ID: 30902872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.