BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 27144719)

  • 1. Influence of Hydraulic Fracturing on Overlying Aquifers in the Presence of Leaky Abandoned Wells.
    Brownlow JW; James SC; Yelderman JC
    Ground Water; 2016 Nov; 54(6):781-792. PubMed ID: 27144719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial Risk Analysis of Hydraulic Fracturing near Abandoned and Converted Oil and Gas Wells.
    Brownlow JW; Yelderman JC; James SC
    Ground Water; 2017 Mar; 55(2):268-280. PubMed ID: 27676227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling fate and transport of hydraulic fracturing fluid in the presence of abandoned wells.
    Taherdangkoo R; Tatomir A; Anighoro T; Sauter M
    J Contam Hydrol; 2019 Feb; 221():58-68. PubMed ID: 30679092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Commingled Fluids in Abandoned Boreholes: Proximity Analysis of a Hidden Liability.
    Perra C; McIntosh JC; Watson T; Ferguson G
    Ground Water; 2022 Mar; 60(2):210-224. PubMed ID: 34617284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid.
    Edwards RWJ; Doster F; Celia MA; Bandilla KW
    Environ Sci Technol; 2017 Dec; 51(23):13779-13787. PubMed ID: 29086564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring concentration and isotopic composition of methane in groundwater in the Utica Shale hydraulic fracturing region of Ohio.
    Claire Botner E; Townsend-Small A; Nash DB; Xu X; Schimmelmann A; Miller JH
    Environ Monit Assess; 2018 May; 190(6):322. PubMed ID: 29721622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water usage for natural gas production through hydraulic fracturing in the United States from 2008 to 2014.
    Chen H; Carter KE
    J Environ Manage; 2016 Apr; 170():152-9. PubMed ID: 26826457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydraulic fracturing near domestic groundwater wells.
    Jasechko S; Perrone D
    Proc Natl Acad Sci U S A; 2017 Dec; 114(50):13138-13143. PubMed ID: 29180405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing cumulative water impacts from shale oil and gas production: Permian Basin case study.
    Scanlon BR; Reedy RC; Wolaver BD
    Sci Total Environ; 2022 Mar; 811():152306. PubMed ID: 34906580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical evaluation of human health risks due to hydraulic fracturing in natural gas and petroleum production.
    Wollin KM; Damm G; Foth H; Freyberger A; Gebel T; Mangerich A; Gundert-Remy U; Partosch F; Röhl C; Schupp T; Hengstler JG
    Arch Toxicol; 2020 Apr; 94(4):967-1016. PubMed ID: 32385535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of Groundwater Pumping for Hydraulic Fracturing on Aquifers Overlying the Eagle Ford Shale.
    Brien JA; Obkirchner GE; Knappett PSK; Miller GR; Burnett D; Bhatia M
    Ground Water; 2024; 62(3):343-356. PubMed ID: 37507835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the potential of cross-contamination from oil and gas hydraulic fracturing: A case study in northeastern British Columbia, Canada.
    Wisen J; Chesnaux R; Wendling G; Werring J; Barbecot F; Baudron P
    J Environ Manage; 2019 Sep; 246():275-282. PubMed ID: 31181476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in Deep Groundwater Flow Patterns Related to Oil and Gas Activities.
    Jellicoe K; McIntosh JC; Ferguson G
    Ground Water; 2022 Jan; 60(1):47-63. PubMed ID: 34519028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales.
    Darrah TH; Vengosh A; Jackson RB; Warner NR; Poreda RJ
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14076-81. PubMed ID: 25225410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical and bioassay assessment of waters related to hydraulic fracturing at a tight gas production site.
    Faber AH; Annevelink MPJA; Schot PP; Baken KA; Schriks M; Emke E; de Voogt P; van Wezel AP
    Sci Total Environ; 2019 Nov; 690():636-646. PubMed ID: 31301504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the chemicals used in hydraulic fracturing fluids for wells located in the Marcellus Shale Play.
    Chen H; Carter KE
    J Environ Manage; 2017 Sep; 200():312-324. PubMed ID: 28591666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Depths of Hydraulic Fracturing and Accompanying Water Use Across the United States.
    Jackson RB; Lowry ER; Pickle A; Kang M; DiGiulio D; Zhao K
    Environ Sci Technol; 2015 Aug; 49(15):8969-76. PubMed ID: 26196164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projecting the Water Footprint Associated with Shale Resource Production: Eagle Ford Shale Case Study.
    Ikonnikova SA; Male F; Scanlon BR; Reedy RC; McDaid G
    Environ Sci Technol; 2017 Dec; 51(24):14453-14461. PubMed ID: 28841009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to Adapt Chemical Risk Assessment for Unconventional Hydrocarbon Extraction Related to the Water System.
    Faber AH; Annevelink M; Gilissen HK; Schot P; van Rijswick M; de Voogt P; van Wezel A
    Rev Environ Contam Toxicol; 2019; 246():1-32. PubMed ID: 29280081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach.
    Burton TG; Rifai HS; Hildenbrand ZL; Carlton DD; Fontenot BE; Schug KA
    Sci Total Environ; 2016 Mar; 545-546():114-26. PubMed ID: 26745299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.