These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27144876)

  • 1. Novel stationary phases based on asphaltenes for gas chromatography.
    Boczkaj G; Momotko M; Chruszczyk D; Przyjazny A; Kamiński M
    J Sep Sci; 2016 Jul; 39(13):2527-36. PubMed ID: 27144876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First deep eutectic solvent-based (DES) stationary phase for gas chromatography and future perspectives for DES application in separation techniques.
    Momotko M; Łuczak J; Przyjazny A; Boczkaj G
    J Chromatogr A; 2021 Jan; 1635():461701. PubMed ID: 33254003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The gas-liquid chromatographic stationary phase properties of liquid organic salts: Anomalous selectivity variation when employing the Rohrschneider/McReynolds system.
    Morales R; Blanco C; Furton KG
    Talanta; 1993 Oct; 40(10):1541-9. PubMed ID: 18965818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination and use of Rohrschneider-McReynolds constants for chiral stationary phases used in capillary gas chromatography.
    Berthod A; Zhou EY; Le K; Armstrong DW
    Anal Chem; 1995 Mar; 67(5):849-57. PubMed ID: 7762821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Application of New Amphiphilic Asphaltene Ionic Liquid Polymers to Demulsify Arabic Heavy Petroleum Crude Oil Emulsions.
    Ismail AI; Atta AM; El-Newehy M; El-Hefnawy ME
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32498350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A flexible and convenient strategy for synthesis of ionic liquid bonded polysiloxane stationary phases.
    Zhao X; Tan K; Xing J
    J Chromatogr A; 2019 Feb; 1587():197-208. PubMed ID: 30580961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation performance of guanidinium-based ionic liquids as stationary phases for gas chromatography.
    Qiao L; Lu K; Qi M; Fu R
    J Chromatogr A; 2013 Feb; 1276():112-9. PubMed ID: 23313301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fractal aggregation of asphaltenes.
    Hoepfner MP; Fávero CV; Haji-Akbari N; Fogler HS
    Langmuir; 2013 Jul; 29(28):8799-808. PubMed ID: 23808932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triptycene-based stationary phases for gas chromatographic separations of positional isomers.
    He J; Yu L; Huang X; Qi M
    J Chromatogr A; 2019 Aug; 1599():223-230. PubMed ID: 31000208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dithienyl benzothiadiazole derivatives: a new type of stationary phases for capillary gas chromatography.
    Sun T; Tian L; Li J; Qi M; Fu R; Huang X
    J Chromatogr A; 2013 Dec; 1321():109-18. PubMed ID: 24238708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography.
    Armstrong DW; He L; Liu YS
    Anal Chem; 1999 Sep; 71(17):3873-6. PubMed ID: 10489532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of Gas-Chromatographic Poly(Siloxane) Stationary Phases by Theoretical Molecular Descriptors and Prediction of McReynolds Constants.
    D'Archivio AA; Giannitto A
    Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31035726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 50% n-octylmethyl, 50% diphenyl-polysiloxane as stationary phase with unique selectivity for gas chromatography.
    Mayer BX; Kählig H; Rauter W
    Analyst; 2003 Oct; 128(10):1238-42. PubMed ID: 14667159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas chromatography system constant database for 52 wall-coated, open-tubular columns covering the temperature range 60-140 °C.
    Poole CF
    J Chromatogr A; 2019 Oct; 1604():460482. PubMed ID: 31474468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extension of the system constants database for open-tubular columns: system maps at low and intermediate temperatures for four new columns.
    Atapattu SN; Eggers K; Poole CF; Kiridena W; Koziol WW
    J Chromatogr A; 2009 Mar; 1216(10):1640-9. PubMed ID: 19081101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of resins and asphaltenes facilitates asphaltene dissolution by an organic acid.
    Hashmi SM; Firoozabadi A
    J Colloid Interface Sci; 2013 Mar; 394():115-23. PubMed ID: 23351475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model molecules mimicking asphaltenes.
    Sjöblom J; Simon S; Xu Z
    Adv Colloid Interface Sci; 2015 Apr; 218():1-16. PubMed ID: 25638443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Asphaltene Aggregation in Model Heptane-Toluene Mixtures on Stability of Water-in-Oil Emulsions.
    McLean JD; Kilpatrick PK
    J Colloid Interface Sci; 1997 Dec; 196(1):23-34. PubMed ID: 9441646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation.
    Gu ZY; Yang CX; Chang N; Yan XP
    Acc Chem Res; 2012 May; 45(5):734-45. PubMed ID: 22404189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unified classification of stationary phases for packed column supercritical fluid chromatography.
    West C; Lesellier E
    J Chromatogr A; 2008 May; 1191(1-2):21-39. PubMed ID: 18384800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.