These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 27144902)
1. Greatly Enhanced Optical Absorption of a Defective MoS2 Monolayer through Oxygen Passivation. Shu H; Li Y; Niu X; Wang J ACS Appl Mater Interfaces; 2016 May; 8(20):13150-6. PubMed ID: 27144902 [TBL] [Abstract][Full Text] [Related]
2. Spatially Selective Enhancement of Photoluminescence in MoS Sivaram SV; Hanbicki AT; Rosenberger MR; Jernigan GG; Chuang HJ; McCreary KM; Jonker BT ACS Appl Mater Interfaces; 2019 May; 11(17):16147-16155. PubMed ID: 30973218 [TBL] [Abstract][Full Text] [Related]
3. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide. Carozo V; Wang Y; Fujisawa K; Carvalho BR; McCreary A; Feng S; Lin Z; Zhou C; Perea-López N; Elías AL; Kabius B; Crespi VH; Terrones M Sci Adv; 2017 Apr; 3(4):e1602813. PubMed ID: 28508048 [TBL] [Abstract][Full Text] [Related]
4. Real-Time Investigation of Sulfur Vacancy Generation and Passivation in Monolayer Molybdenum Disulfide Grünleitner T; Henning A; Bissolo M; Zengerle M; Gregoratti L; Amati M; Zeller P; Eichhorn J; Stier AV; Holleitner AW; Finley JJ; Sharp ID ACS Nano; 2022 Dec; 16(12):20364-20375. PubMed ID: 36516326 [TBL] [Abstract][Full Text] [Related]
5. Defect Passivation and Photoluminescence Enhancement of Monolayer MoS Wang W; Shu H; Wang J; Cheng Y; Liang P; Chen X ACS Appl Mater Interfaces; 2020 Feb; 12(8):9563-9571. PubMed ID: 32009383 [TBL] [Abstract][Full Text] [Related]
6. Room-Temperature Photoluminescence Mediated by Sulfur Vacancies in 2D Molybdenum Disulfide. Zhu Y; Lim J; Zhang Z; Wang Y; Sarkar S; Ramsden H; Li Y; Yan H; Phuyal D; Gauriot N; Rao A; Hoye RLZ; Eda G; Chhowalla M ACS Nano; 2023 Jul; 17(14):13545-13553. PubMed ID: 37418552 [TBL] [Abstract][Full Text] [Related]
7. Electrical and Optical Characterization of MoS2 with Sulfur Vacancy Passivation by Treatment with Alkanethiol Molecules. Cho K; Min M; Kim TY; Jeong H; Pak J; Kim JK; Jang J; Yun SJ; Lee YH; Hong WK; Lee T ACS Nano; 2015 Aug; 9(8):8044-53. PubMed ID: 26262556 [TBL] [Abstract][Full Text] [Related]
8. Ultrafast transient sub-bandgap absorption of monolayer MoS Das S; Wang Y; Dai Y; Li S; Sun Z Light Sci Appl; 2021 Jan; 10(1):27. PubMed ID: 33514690 [TBL] [Abstract][Full Text] [Related]
9. Rational Passivation of Sulfur Vacancy Defects in Two-Dimensional Transition Metal Dichalcogenides. Bretscher H; Li Z; Xiao J; Qiu DY; Refaely-Abramson S; Alexander-Webber JA; Tanoh A; Fan Y; Delport G; Williams CA; Stranks SD; Hofmann S; Neaton JB; Louie SG; Rao A ACS Nano; 2021 May; 15(5):8780-8789. PubMed ID: 33983711 [TBL] [Abstract][Full Text] [Related]
10. Modulation of electronic and optical properties of line defected armchair MoS Gholami Rudi S; Soleimani-Amiri S J Phys Condens Matter; 2021 Apr; 33(18):. PubMed ID: 33752179 [TBL] [Abstract][Full Text] [Related]
11. Optics, mechanics, and energetics of two-dimensional MoS2 nanostructures from a theoretical perspective. Joswig JO; Lorenz T; Wendumu TB; Gemming S; Seifert G Acc Chem Res; 2015 Jan; 48(1):48-55. PubMed ID: 25489859 [TBL] [Abstract][Full Text] [Related]
12. Defect evolution behaviors from single sulfur point vacancies to line vacancies in monolayer molybdenum disulfide. Gao C; Yang X; Jiang M; Chen L; Chen Z; Singh CV Phys Chem Chem Phys; 2021 Sep; 23(35):19525-19536. PubMed ID: 34524293 [TBL] [Abstract][Full Text] [Related]
13. Reversible Photoluminescence Tuning by Defect Passivation via Laser Irradiation on Aged Monolayer MoS Ardekani H; Younts R; Yu Y; Cao L; Gundogdu K ACS Appl Mater Interfaces; 2019 Oct; 11(41):38240-38246. PubMed ID: 31502823 [TBL] [Abstract][Full Text] [Related]
14. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. Chang YH; Zhang W; Zhu Y; Han Y; Pu J; Chang JK; Hsu WT; Huang JK; Hsu CL; Chiu MH; Takenobu T; Li H; Wu CI; Chang WH; Wee AT; Li LJ ACS Nano; 2014 Aug; 8(8):8582-90. PubMed ID: 25094022 [TBL] [Abstract][Full Text] [Related]
15. Twin Defect Derived Growth of Atomically Thin MoS Wang J; Cai X; Shi R; Wu Z; Wang W; Long G; Tang Y; Cai N; Ouyang W; Geng P; Chandrashekar BN; Amini A; Wang N; Cheng C ACS Nano; 2018 Jan; 12(1):635-643. PubMed ID: 29253328 [TBL] [Abstract][Full Text] [Related]
16. Remarkable quality improvement of as-grown monolayer MoS Yang P; Shan Y; Chen J; Ekoya G; Han J; Qiu ZJ; Sun J; Chen F; Wang H; Bao W; Hu L; Zhang RJ; Liu R; Cong C Nanoscale; 2020 Jan; 12(3):1958-1966. PubMed ID: 31909408 [TBL] [Abstract][Full Text] [Related]
17. Tailoring MoS Li Z; Li Y; Han T; Wang X; Yu Y; Tay B; Liu Z; Fang Z ACS Nano; 2017 Feb; 11(2):1165-1171. PubMed ID: 28245544 [TBL] [Abstract][Full Text] [Related]
18. Fabry-Perot Cavity-Enhanced Optical Absorption in Ultrasensitive Tunable Photodiodes Based on Hybrid 2D Materials. Wang Q; Guo J; Ding Z; Qi D; Jiang J; Wang Z; Chen W; Xiang Y; Zhang W; Wee ATS Nano Lett; 2017 Dec; 17(12):7593-7598. PubMed ID: 29115838 [TBL] [Abstract][Full Text] [Related]
19. Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide. Sun X; Wang Z; Fu YQ Sci Rep; 2015 Dec; 5():18712. PubMed ID: 26692345 [TBL] [Abstract][Full Text] [Related]
20. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Dhakal KP; Duong DL; Lee J; Nam H; Kim M; Kan M; Lee YH; Kim J Nanoscale; 2014 Nov; 6(21):13028-35. PubMed ID: 25247614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]