These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27144929)

  • 1. Adaptation to climate through flowering phenology: a case study in Medicago truncatula.
    Burgarella C; Chantret N; Gay L; Prosperi JM; Bonhomme M; Tiffin P; Young ND; Ronfort J
    Mol Ecol; 2016 Jul; 25(14):3397-415. PubMed ID: 27144929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic signature of adaptation to climate in Medicago truncatula.
    Yoder JB; Stanton-Geddes J; Zhou P; Briskine R; Young ND; Tiffin P
    Genetics; 2014 Apr; 196(4):1263-75. PubMed ID: 24443444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crop-model assisted phenomics and genome-wide association study for climate adaptation of indica rice. 1. Phenology.
    Dingkuhn M; Pasco R; Pasuquin JM; Damo J; Soulié JC; Raboin LM; Dusserre J; Sow A; Manneh B; Shrestha S; Balde A; Kretzschmar T
    J Exp Bot; 2017 Jul; 68(15):4369-4388. PubMed ID: 28922774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil environment is a key driver of adaptation in Medicago truncatula: new insights from landscape genomics.
    Guerrero J; Andrello M; Burgarella C; Manel S
    New Phytol; 2018 Jul; 219(1):378-390. PubMed ID: 29696659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide signatures of flowering adaptation to climate temperature: Regional analyses in a highly diverse native range of Arabidopsis thaliana.
    Tabas-Madrid D; Méndez-Vigo B; Arteaga N; Marcer A; Pascual-Montano A; Weigel D; Xavier Picó F; Alonso-Blanco C
    Plant Cell Environ; 2018 Aug; 41(8):1806-1820. PubMed ID: 29520809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular adaptation in flowering and symbiotic recognition pathways: insights from patterns of polymorphism in the legume Medicago truncatula.
    De Mita S; Chantret N; Loridon K; Ronfort J; Bataillon T
    BMC Evol Biol; 2011 Aug; 11():229. PubMed ID: 21806823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula.
    Stanton-Geddes J; Paape T; Epstein B; Briskine R; Yoder J; Mudge J; Bharti AK; Farmer AD; Zhou P; Denny R; May GD; Erlandson S; Yakub M; Sugawara M; Sadowsky MJ; Young ND; Tiffin P
    PLoS One; 2013; 8(5):e65688. PubMed ID: 23741505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flowering time QTL in natural populations of Arabidopsis thaliana and implications for their adaptive value.
    Dittmar EL; Oakley CG; Ågren J; Schemske DW
    Mol Ecol; 2014 Sep; 23(17):4291-303. PubMed ID: 25039363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Range Position on Locally Adaptive Gene-Environment Associations in Populus Flowering Time Genes.
    Keller SR; Chhatre VE; Fitzpatrick MC
    J Hered; 2017 Dec; 109(1):47-58. PubMed ID: 29126208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula.
    Pierre JB; Huguet T; Barre P; Huyghe C; Julier B
    Theor Appl Genet; 2008 Aug; 117(4):609-20. PubMed ID: 18553068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MtVRN2 is a Polycomb VRN2-like gene which represses the transition to flowering in the model legume Medicago truncatula.
    Jaudal M; Zhang L; Che C; Hurley DG; Thomson G; Wen J; Mysore KS; Putterill J
    Plant J; 2016 Apr; 86(2):145-60. PubMed ID: 26947149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retroelement insertions at the Medicago FTa1 locus in spring mutants eliminate vernalisation but not long-day requirements for early flowering.
    Jaudal M; Yeoh CC; Zhang L; Stockum C; Mysore KS; Ratet P; Putterill J
    Plant J; 2013 Nov; 76(4):580-91. PubMed ID: 23964816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local adaptation in the flowering-time gene network of balsam poplar, Populus balsamifera L.
    Keller SR; Levsen N; Olson MS; Tiffin P
    Mol Biol Evol; 2012 Oct; 29(10):3143-52. PubMed ID: 22513286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Annual and perennial Medicago show signatures of parallel adaptation to climate and soil in highly conserved genes.
    Blanco-Pastor JL; Liberal IM; Sakiroglu M; Wei Y; Brummer EC; Andrew RL; Pfeil BE
    Mol Ecol; 2021 Sep; 30(18):4448-4465. PubMed ID: 34217151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Genomics and Flowering Time in Medicago truncatula: An Overview.
    Weller JL; Macknight RC
    Methods Mol Biol; 2018; 1822():261-271. PubMed ID: 30043309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic Signatures of Adaptation to a Precipitation Gradient in Nigerian Sorghum.
    Olatoye MO; Hu Z; Maina F; Morris GP
    G3 (Bethesda); 2018 Oct; 8(10):3269-3281. PubMed ID: 30097471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Habitat-specific natural selection at a flowering-time QTL is a main driver of local adaptation in two wild barley populations.
    Verhoeven KJ; Poorter H; Nevo E; Biere A
    Mol Ecol; 2008 Jul; 17(14):3416-24. PubMed ID: 18573164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula.
    Julier B; Huguet T; Chardon F; Ayadi R; Pierre JB; Prosperi JM; Barre P; Huyghe C
    Theor Appl Genet; 2007 May; 114(8):1391-406. PubMed ID: 17375280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the geographical scale of adaptive phenological variation and its underlying genetics in Arabidopsis thaliana.
    Brachi B; Villoutreix R; Faure N; Hautekèete N; Piquot Y; Pauwels M; Roby D; Cuguen J; Bergelson J; Roux F
    Mol Ecol; 2013 Aug; 22(16):4222-4240. PubMed ID: 23875782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium).
    Castède S; Campoy JA; Le Dantec L; Quero-García J; Barreneche T; Wenden B; Dirlewanger E
    PLoS One; 2015; 10(11):e0143250. PubMed ID: 26587668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.