These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27145060)

  • 1. Coupling of the Decarboxylation of 2-Cyano-2-phenylpropanoic Acid to Large-Amplitude Motions: A Convenient Fuel for an Acid-Base-Operated Molecular Switch.
    Berrocal JA; Biagini C; Mandolini L; Di Stefano S
    Angew Chem Int Ed Engl; 2016 Jun; 55(24):6997-7001. PubMed ID: 27145060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Hydrolysis of the Anhydride of 2-Cyano-2-phenylpropanoic Acid Triggers the Repeated Back and Forth Motions of an Acid-Base Operated Molecular Switch.
    Biagini C; Capocasa G; Cataldi V; Del Giudice D; Mandolini L; Di Stefano S
    Chemistry; 2019 Nov; 25(66):15205-15211. PubMed ID: 31573109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variations in the fuel structure control the rate of the back and forth motions of a chemically fuelled molecular switch.
    Biagini C; Albano S; Caruso R; Mandolini L; Berrocal JA; Di Stefano S
    Chem Sci; 2018 Jan; 9(1):181-188. PubMed ID: 29629086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissipative Systems Driven by the Decarboxylation of Activated Carboxylic Acids.
    Del Giudice D; Di Stefano S
    Acc Chem Res; 2023 Apr; 56(7):889-899. PubMed ID: 36916734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoinduced Release of a Chemical Fuel for Acid-Base-Operated Molecular Machines.
    Biagini C; Di Pietri F; Mandolini L; Lanzalunga O; Di Stefano S
    Chemistry; 2018 Jul; 24(40):10122-10127. PubMed ID: 29697159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2-Cyano-2-phenylpropanoic Acid Triggers the Back and Forth Motions of an Acid-Base-Operated Paramagnetic Molecular Switch.
    Franchi P; Poderi C; Mezzina E; Biagini C; Di Stefano S; Lucarini M
    J Org Chem; 2019 Jul; 84(14):9364-9368. PubMed ID: 31203619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the liberation rate of the in situ release of a chemical fuel for the operationally autonomous motions of molecular machines.
    Biagini C; Capocasa G; Del Giudice D; Cataldi V; Mandolini L; Di Stefano S
    Org Biomol Chem; 2020 May; 18(20):3867-3873. PubMed ID: 32373832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model carbyne vs ideal and DNA catenanes.
    Dobrowolski JC; Mazurek AP
    J Chem Inf Model; 2005; 45(4):1030-8. PubMed ID: 16045298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General method for synthesis of functionalized macrocycles and catenanes utilizing "click" chemistry.
    Megiatto JD; Schuster DI
    J Am Chem Soc; 2008 Oct; 130(39):12872-3. PubMed ID: 18767850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit.
    Asakawa M; Ashton PR; Balzani V; Credi A; Hamers C; Mattersteig G; Montalti M; Shipway AN; Spencer N; Stoddart JF; Tolley MS; Venturi M; White AJP; Williams DJ
    Angew Chem Int Ed Engl; 1998 Feb; 37(3):333-337. PubMed ID: 29711270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesizing [2]Rotaxanes and [2]Catenanes through Na(+)-Templated Clipping of Macrocycles around Oligo(ethylene glycol) Units.
    Wu YW; Chen PN; Chang CF; Lai CC; Chiu SH
    Org Lett; 2015 May; 17(9):2158-61. PubMed ID: 25905465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules.
    Fahrenbach AC; Bruns CJ; Li H; Trabolsi A; Coskun A; Stoddart JF
    Acc Chem Res; 2014 Feb; 47(2):482-93. PubMed ID: 24341283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotary and linear molecular motors driven by pulses of a chemical fuel.
    Erbas-Cakmak S; Fielden SDP; Karaca U; Leigh DA; McTernan CT; Tetlow DJ; Wilson MR
    Science; 2017 Oct; 358(6361):340-343. PubMed ID: 29051374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of achiral and racemic catenanes based on terpyridine and a directionalized terpyridine mimic, pyridyl-phenanthroline.
    Loren JC; Gantzel P; Linden A; Siegel JS
    Org Biomol Chem; 2005 Sep; 3(17):3105-16. PubMed ID: 16106292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polypseudorotaxanes via ring-opening metathesis polymerizations of [2]catenanes.
    Kang S; Berkshire BM; Xue Z; Gupta M; Layode C; May PA; Mayer MF
    J Am Chem Soc; 2008 Nov; 130(46):15246-7. PubMed ID: 18939837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of physical environment on molecular electromechanical switching.
    Flood AH; Peters AJ; Vignon SA; Steuerman DW; Tseng HR; Kang S; Heath JR; Stoddart JF
    Chemistry; 2004 Dec; 10(24):6558-64. PubMed ID: 15562404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereoselectivity of DNA catenane fusion by resolvase.
    Stark WM; Parker CN; Halford SE; Boocock MR
    Nature; 1994 Mar; 368(6466):76-8. PubMed ID: 8107889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abiotic Chemical Fuels for the Operation of Molecular Machines.
    Biagini C; Di Stefano S
    Angew Chem Int Ed Engl; 2020 May; 59(22):8344-8354. PubMed ID: 31898850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative formation of [2]catenanes using copper(I) and palladium(II) as templating and assembling centers: the entwining route and the threading approach.
    Dietrich-Buchecker C; Colasson B; Fujita M; Hori A; Geum N; Sakamoto S; Yamaguchi K; Sauvage JP
    J Am Chem Soc; 2003 May; 125(19):5717-25. PubMed ID: 12733910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in the Synthesis and Functions of Reconfigurable Interlocked DNA Nanostructures.
    Lu CH; Cecconello A; Willner I
    J Am Chem Soc; 2016 Apr; 138(16):5172-85. PubMed ID: 27019201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.