These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 27145175)

  • 1. Petascale Orbital-Free Density Functional Theory Enabled by Small-Box Algorithms.
    Chen M; Jiang XW; Zhuang H; Wang LW; Carter EA
    J Chem Theory Comput; 2016 Jun; 12(6):2950-63. PubMed ID: 27145175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can orbital-free density functional theory simulate molecules?
    Xia J; Huang C; Shin I; Carter EA
    J Chem Phys; 2012 Feb; 136(8):084102. PubMed ID: 22380027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced von Weizsäcker Wang-Govind-Carter kinetic energy density functional for semiconductors.
    Shin I; Carter EA
    J Chem Phys; 2014 May; 140(18):18A531. PubMed ID: 24832339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angular-momentum-dependent orbital-free density functional theory.
    Ke Y; Libisch F; Xia J; Wang LW; Carter EA
    Phys Rev Lett; 2013 Aug; 111(6):066402. PubMed ID: 23971595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. libKEDF: An accelerated library of kinetic energy density functionals.
    Dieterich JM; Witt WC; Carter EA
    J Comput Chem; 2017 Jun; 38(17):1552-1559. PubMed ID: 28425568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the orbital-free density functional theory description of covalent materials.
    Zhou B; Ligneres VL; Carter EA
    J Chem Phys; 2005 Jan; 122(4):44103. PubMed ID: 15740231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass-zero constrained dynamics for simulations based on orbital-free density functional theory.
    Coretti A; Baird T; Vuilleumier R; Bonella S
    J Chem Phys; 2022 Dec; 157(21):214110. PubMed ID: 36511531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orbital-free density functional theory implementation with the projector augmented-wave method.
    Lehtomäki J; Makkonen I; Caro MA; Harju A; Lopez-Acevedo O
    J Chem Phys; 2014 Dec; 141(23):234102. PubMed ID: 25527914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of warm dense aluminum: a molecular dynamics study with density functional theory and deep potential.
    Liu Q; Lu D; Chen M
    J Phys Condens Matter; 2020 Apr; 32(14):144002. PubMed ID: 31739300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlocal kinetic energy functionals by functional integration.
    Mi W; Genova A; Pavanello M
    J Chem Phys; 2018 May; 148(18):184107. PubMed ID: 29764156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transferable local pseudopotentials for magnesium, aluminum and silicon.
    Huang C; Carter EA
    Phys Chem Chem Phys; 2008 Dec; 10(47):7109-20. PubMed ID: 19039345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First principles local pseudopotential for silver: towards orbital-free density-functional theory for transition metals.
    Zhou B; Carter EA
    J Chem Phys; 2005 May; 122(18):184108. PubMed ID: 15918695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Globally-Optimized Local Pseudopotentials for (Orbital-Free) Density Functional Theory Simulations of Liquids and Solids.
    Del Rio BG; Dieterich JM; Carter EA
    J Chem Theory Comput; 2017 Aug; 13(8):3684-3695. PubMed ID: 28686438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the Free Energies of Solvation and Electronic Structures of Lithium-Ion Battery Electrolytes.
    Shakourian-Fard M; Kamath G; Sankaranarayanan SK
    Chemphyschem; 2016 Sep; 17(18):2916-30. PubMed ID: 27257715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.
    Petrenko T; Kossmann S; Neese F
    J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-Dependent Plasmonic Resonances from Large-Scale Quantum Simulations.
    Xiang H; Zhang X; Neuhauser D; Lu G
    J Phys Chem Lett; 2014 Apr; 5(7):1163-9. PubMed ID: 26274465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-consistent self-interaction corrected density functional theory calculations for atoms using Fermi-Löwdin orbitals: Optimized Fermi-orbital descriptors for Li-Kr.
    Kao DY; Withanage K; Hahn T; Batool J; Kortus J; Jackson K
    J Chem Phys; 2017 Oct; 147(16):164107. PubMed ID: 29096512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic differentiation for orbital-free density functional theory.
    Tan CW; Pickard CJ; Witt WC
    J Chem Phys; 2023 Mar; 158(12):124801. PubMed ID: 37003740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-space density kernel method for Kohn-Sham density functional theory calculations at high temperature.
    Xu Q; Jing X; Zhang B; Pask JE; Suryanarayana P
    J Chem Phys; 2022 Mar; 156(9):094105. PubMed ID: 35259887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.