These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 27145262)

  • 21. Lessons learned in induced fit docking and metadynamics in the Drug Design Data Resource Grand Challenge 2.
    Baumgartner MP; Evans DA
    J Comput Aided Mol Des; 2018 Jan; 32(1):45-58. PubMed ID: 29127581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigating drug-target association and dissociation mechanisms using metadynamics-based algorithms.
    Cavalli A; Spitaleri A; Saladino G; Gervasio FL
    Acc Chem Res; 2015 Feb; 48(2):277-85. PubMed ID: 25496113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reliable and Accurate Solution to the Induced Fit Docking Problem for Protein-Ligand Binding.
    Miller EB; Murphy RB; Sindhikara D; Borrelli KW; Grisewood MJ; Ranalli F; Dixon SL; Jerome S; Boyles NA; Day T; Ghanakota P; Mondal S; Rafi SB; Troast DM; Abel R; Friesner RA
    J Chem Theory Comput; 2021 Apr; 17(4):2630-2639. PubMed ID: 33779166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Docking with GemDock.
    Bitencourt-Ferreira G; de Azevedo WF
    Methods Mol Biol; 2019; 2053():169-188. PubMed ID: 31452105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Metadynamics-Based Protocol for the Determination of GPCR-Ligand Binding Modes.
    Söldner CA; Horn AHC; Sticht H
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31013635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular modeling of hydration in drug design.
    Mancera RL
    Curr Opin Drug Discov Devel; 2007 May; 10(3):275-80. PubMed ID: 17554853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. E-novo: an automated workflow for efficient structure-based lead optimization.
    Pearce BC; Langley DR; Kang J; Huang H; Kulkarni A
    J Chem Inf Model; 2009 Jul; 49(7):1797-809. PubMed ID: 19552372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of ligand binding mode among multiple cross-docking poses by molecular dynamics simulations.
    Liu K; Kokubo H
    J Comput Aided Mol Des; 2020 Nov; 34(11):1195-1205. PubMed ID: 32869148
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Screening of drug target proteins by 2D ligand matching approach.
    Feng J; Guo H; Wang J; Lu T
    Chem Biol Drug Des; 2014 Feb; 83(2):174-82. PubMed ID: 24034065
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding affinity prediction for protein-ligand complexes based on β contacts and B factor.
    Liu Q; Kwoh CK; Li J
    J Chem Inf Model; 2013 Nov; 53(11):3076-85. PubMed ID: 24191692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
    Greenidge PA; Kramer C; Mozziconacci JC; Sherman W
    J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.
    Arcon JP; Defelipe LA; Modenutti CP; López ED; Alvarez-Garcia D; Barril X; Turjanski AG; Martí MA
    J Chem Inf Model; 2017 Apr; 57(4):846-863. PubMed ID: 28318252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhance the performance of current scoring functions with the aid of 3D protein-ligand interaction fingerprints.
    Liu J; Su M; Liu Z; Li J; Li Y; Wang R
    BMC Bioinformatics; 2017 Jul; 18(1):343. PubMed ID: 28720122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HarmonyDOCK: the structural analysis of poses in protein-ligand docking.
    Plewczynski D; Philips A; Von Grotthuss M; Rychlewski L; Ginalski K
    J Comput Biol; 2014 Mar; 21(3):247-56. PubMed ID: 21091053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross-docking benchmark for automated pose and ranking prediction of ligand binding.
    Wierbowski SD; Wingert BM; Zheng J; Camacho CJ
    Protein Sci; 2020 Jan; 29(1):298-305. PubMed ID: 31721338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding the challenges of protein flexibility in drug design.
    Antunes DA; Devaurs D; Kavraki LE
    Expert Opin Drug Discov; 2015 Dec; 10(12):1301-13. PubMed ID: 26414598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GWOVina: A grey wolf optimization approach to rigid and flexible receptor docking.
    Wong KM; Tai HK; Siu SWI
    Chem Biol Drug Des; 2021 Jan; 97(1):97-110. PubMed ID: 32679606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extra precision docking, free energy calculation and molecular dynamics simulation studies of CDK2 inhibitors.
    Tripathi SK; Muttineni R; Singh SK
    J Theor Biol; 2013 Oct; 334():87-100. PubMed ID: 23727278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovery of new non-steroidal FXR ligands via a virtual screening workflow based on Phase shape and induced fit docking.
    Fu J; Si P; Zheng M; Chen L; Shen X; Tang Y; Li W
    Bioorg Med Chem Lett; 2012 Nov; 22(22):6848-53. PubMed ID: 23040732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scoring functions for prediction of protein-ligand interactions.
    Wang JC; Lin JH
    Curr Pharm Des; 2013; 19(12):2174-82. PubMed ID: 23016847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.