These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27145532)

  • 1. Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery.
    Wandt J; Jakes P; Granwehr J; Gasteiger HA; Eichel RA
    Angew Chem Int Ed Engl; 2016 Jun; 55(24):6892-5. PubMed ID: 27145532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Reaction Chemistry during Charging in Aprotic Lithium-Oxygen Batteries: Existing Problems and Solutions.
    Shu C; Wang J; Long J; Liu HK; Dou SX
    Adv Mater; 2019 Apr; 31(15):e1804587. PubMed ID: 30767276
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Córdoba D; Benavides LN; Murgida DH; Rodríguez HB; Calvo EJ
    Faraday Discuss; 2024 Jan; 248(0):190-209. PubMed ID: 37800181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen.
    Mahne N; Renfrew SE; McCloskey BD; Freunberger SA
    Angew Chem Int Ed Engl; 2018 May; 57(19):5529-5533. PubMed ID: 29543372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards an Understanding of Li
    Liu C; Brant WR; Younesi R; Dong Y; Edström K; Gustafsson T; Zhu J
    ChemSusChem; 2017 Apr; 10(7):1592-1599. PubMed ID: 28247542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A High-Performance Li-O
    Zhou B; Guo L; Zhang Y; Wang J; Ma L; Zhang WH; Fu Z; Peng Z
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28585309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying Reactive Sites and Transport Limitations of Oxygen Reactions in Aprotic Lithium-O2 Batteries at the Stage of Sudden Death.
    Wang J; Zhang Y; Guo L; Wang E; Peng Z
    Angew Chem Int Ed Engl; 2016 Apr; 55(17):5201-5. PubMed ID: 26970228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured Metal Carbides for Aprotic Li-O2 Batteries: New Insights into Interfacial Reactions and Cathode Stability.
    Kundu D; Black R; Adams B; Harrison K; Zavadil K; Nazar LF
    J Phys Chem Lett; 2015 Jun; 6(12):2252-8. PubMed ID: 26266600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quenching singlet oxygen via intersystem crossing for a stable Li-O
    Jiang Z; Huang Y; Zhu Z; Gao S; Lv Q; Li F
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2202835119. PubMed ID: 35969765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Operando observation of the gold-electrolyte interface in Li-O2 batteries.
    Gittleson FS; Ryu WH; Taylor AD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling the Effect of Singlet Oxygen on Metal-O
    Ruiz de Larramendi I; Ortiz-Vitoriano N
    Front Chem; 2020; 8():605. PubMed ID: 32775318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intensive Study on the Catalytical Behavior of N-Methylphenothiazine as a Soluble Mediator to Oxidize the Li
    Feng N; Mu X; Zhang X; He P; Zhou H
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3733-3739. PubMed ID: 28079362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Singlet Oxygen during Cycling of the Aprotic Sodium-O
    Schafzahl L; Mahne N; Schafzahl B; Wilkening M; Slugovc C; Borisov SM; Freunberger SA
    Angew Chem Int Ed Engl; 2017 Dec; 56(49):15728-15732. PubMed ID: 29024316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppressing Singlet Oxygen Formation during the Charge Process of Li-O
    Lin Y; Yang Q; Geng F; Feng H; Chen M; Hu B
    J Phys Chem Lett; 2021 Oct; 12(42):10346-10352. PubMed ID: 34665633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Li
    Liu L; Liu Y; Wang C; Peng X; Fang W; Hou Y; Wang J; Ye J; Wu Y
    Small Methods; 2022 Jan; 6(1):e2101280. PubMed ID: 35041287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How To Improve Capacity and Cycling Stability for Next Generation Li-O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations.
    Bergner BJ; Busche MR; Pinedo R; Berkes BB; Schröder D; Janek J
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7756-65. PubMed ID: 26942895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Reaction Pathway of Superoxide Disproportionation Induced by a Soluble Catalyst in Li-O
    Jiang Z; Wen B; Huang Y; Guo Y; Wang Y; Li F
    Angew Chem Int Ed Engl; 2024 Jan; 63(1):e202315314. PubMed ID: 38009311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium-Oxygen Batteries.
    Liang Z; Lu YC
    J Am Chem Soc; 2016 Jun; 138(24):7574-83. PubMed ID: 27228413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic origin of low polarization in aprotic Na-O
    Ma S; McKee WC; Wang J; Guo L; Jansen M; Xu Y; Peng Z
    Phys Chem Chem Phys; 2017 May; 19(19):12375-12383. PubMed ID: 28462412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox Mediators for Li-O
    Park JB; Lee SH; Jung HG; Aurbach D; Sun YK
    Adv Mater; 2018 Jan; 30(1):. PubMed ID: 29178214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.