BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

893 related articles for article (PubMed ID: 27146215)

  • 1. A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design.
    Baco AR; Etter RJ; Ribeiro PA; von der Heyden S; Beerli P; Kinlan BP
    Mol Ecol; 2016 Jul; 25(14):3276-98. PubMed ID: 27146215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design.
    Green AL; Maypa AP; Almany GR; Rhodes KL; Weeks R; Abesamis RA; Gleason MG; Mumby PJ; White AT
    Biol Rev Camb Philos Soc; 2015 Nov; 90(4):1215-47. PubMed ID: 25423947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do larval types affect genetic connectivity at sea? Testing hypothesis in two sibling marine gastropods with contrasting larval development.
    Modica MV; Russini V; Fassio G; Oliverio M
    Mar Environ Res; 2017 Jun; 127():92-101. PubMed ID: 28413103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of dispersal patterns on marine reserves: does the tail wag the dog?
    Lockwood DR; Hastings A; Botsford LW
    Theor Popul Biol; 2002 May; 61(3):297-309. PubMed ID: 12027616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth.
    Brown A; Thatje S
    Biol Rev Camb Philos Soc; 2014 May; 89(2):406-26. PubMed ID: 24118851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing connected marine reserves in the face of global warming.
    Álvarez-Romero JG; Munguía-Vega A; Beger M; Del Mar Mancha-Cisneros M; Suárez-Castillo AN; Gurney GG; Pressey RL; Gerber LR; Morzaria-Luna HN; Reyes-Bonilla H; Adams VM; Kolb M; Graham EM; VanDerWal J; Castillo-López A; Hinojosa-Arango G; Petatán-Ramírez D; Moreno-Baez M; Godínez-Reyes CR; Torre J
    Glob Chang Biol; 2018 Feb; 24(2):e671-e691. PubMed ID: 29274104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of deep-sea genetic connectivity in the New Zealand region: implications for management of benthic ecosystems.
    Bors EK; Rowden AA; Maas EW; Clark MR; Shank TM
    PLoS One; 2012; 7(11):e49474. PubMed ID: 23185341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multidisciplinary analytical framework to delineate spawning areas and quantify larval dispersal in coastal fish.
    Legrand T; Di Franco A; Ser-Giacomi E; Caló A; Rossi V
    Mar Environ Res; 2019 Oct; 151():104761. PubMed ID: 31399203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invertebrate population genetics across Earth's largest habitat: The deep-sea floor.
    Taylor ML; Roterman CN
    Mol Ecol; 2017 Oct; 26(19):4872-4896. PubMed ID: 28833857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertical ecology of the pelagic ocean: classical patterns and new perspectives.
    Sutton TT
    J Fish Biol; 2013 Dec; 83(6):1508-27. PubMed ID: 24298949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connectivity and Dispersal Patterns of Protected Biogenic Reefs: Implications for the Conservation of Modiolus modiolus (L.) in the Irish Sea.
    Gormley K; Mackenzie C; Robins P; Coscia I; Cassidy A; James J; Hull A; Piertney S; Sanderson W; Porter J
    PLoS One; 2015; 10(12):e0143337. PubMed ID: 26625263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying fish assemblages in large, offshore marine protected areas: an Australian case study.
    Hill NA; Barrett N; Lawrence E; Hulls J; Dambacher JM; Nichol S; Williams A; Hayes KR
    PLoS One; 2014; 9(10):e110831. PubMed ID: 25360763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial connectivity in an adult-sedentary reef fish with extended pelagic larval phase.
    Antoni L; Saillant E
    Mol Ecol; 2017 Oct; 26(19):4955-4965. PubMed ID: 28746775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. North Atlantic demersal deep-water fish distribution and biology: present knowledge and challenges for the future.
    Bergstad OA
    J Fish Biol; 2013 Dec; 83(6):1489-507. PubMed ID: 24298948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colonization of the deep sea by fishes.
    Priede IG; Froese R
    J Fish Biol; 2013 Dec; 83(6):1528-50. PubMed ID: 24298950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sessile and mobile components of a benthic ecosystem display mixed trends within a temperate marine reserve.
    Howarth LM; Pickup SE; Evans LE; Cross TJ; Hawkins JP; Roberts CM; Stewart BD
    Mar Environ Res; 2015 Jun; 107():8-23. PubMed ID: 25863362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion in the ocean-Paradigm shift in movement ecology requires "sedentary" organisms to be redefined.
    Sheehan EV
    J Anim Ecol; 2019 Jun; 88(6):816-819. PubMed ID: 31168832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-diversity reveals ecological connectivity patterns underlying marine community recovery: Implications for conservation.
    Bevilacqua S; Boero F; De Leo F; Guarnieri G; Mačić V; Benedetti-Cecchi L; Terlizzi A; Fraschetti S
    Ecol Appl; 2023 Jul; 33(5):e2867. PubMed ID: 37114630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the spatial ecology of wide-ranging marine species in the Gulf of California: implications for marine conservation planning.
    Anadón JD; D'Agrosa C; Gondor A; Gerber LR
    PLoS One; 2011; 6(12):e28400. PubMed ID: 22163013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial, socio-economic, and ecological implications of incorporating minimum size constraints in marine protected area network design.
    Metcalfe K; Vaughan G; Vaz S; Smith RJ
    Conserv Biol; 2015 Dec; 29(6):1615-25. PubMed ID: 26219669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.