These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 27146334)

  • 1. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species.
    Johnson DM; Wortemann R; McCulloh KA; Jordan-Meille L; Ward E; Warren JM; Palmroth S; Domec JC
    Tree Physiol; 2016 Aug; 36(8):983-93. PubMed ID: 27146334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conifers but not angiosperms exhibit vulnerability segmentation between leaves and branches in a temperate forest.
    Jin Y; Wang C; Zhou Z
    Tree Physiol; 2019 Mar; 39(3):454-462. PubMed ID: 30321431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydraulic safety margins and air-seeding thresholds in roots, trunks, branches and petioles of four northern hardwood trees.
    Wason JW; Anstreicher KS; Stephansky N; Huggett BA; Brodersen CR
    New Phytol; 2018 Jul; 219(1):77-88. PubMed ID: 29663388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees.
    Urli M; Porté AJ; Cochard H; Guengant Y; Burlett R; Delzon S
    Tree Physiol; 2013 Jul; 33(7):672-83. PubMed ID: 23658197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species.
    Liu YY; Song J; Wang M; Li N; Niu CY; Hao GY
    Tree Physiol; 2015 Dec; 35(12):1333-42. PubMed ID: 26209618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different?
    Johnson DM; McCulloh KA; Woodruff DR; Meinzer FC
    Plant Sci; 2012 Oct; 195():48-53. PubMed ID: 22920998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The stem xylem of Patagonian shrubs operates far from the point of catastrophic dysfunction and is additionally protected from drought-induced embolism by leaves and roots.
    Bucci SJ; Scholz FG; Peschiutta ML; Arias NS; Meinzer FC; Goldstein G
    Plant Cell Environ; 2013 Dec; 36(12):2163-74. PubMed ID: 23639077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamic pipeline: hydraulic capacitance and xylem hydraulic safety in four tall conifer species.
    McCulloh KA; Johnson DM; Meinzer FC; Woodruff DR
    Plant Cell Environ; 2014 May; 37(5):1171-83. PubMed ID: 24289816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vulnerability and hydraulic segmentations at the stem-leaf transition: coordination across Neotropical trees.
    Levionnois S; Ziegler C; Jansen S; Calvet E; Coste S; Stahl C; Salmon C; Delzon S; Guichard C; Heuret P
    New Phytol; 2020 Oct; 228(2):512-524. PubMed ID: 32496575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sex determines xylem anatomy in a dioecious conifer: hydraulic consequences in a drier world.
    Olano JM; González-Muñoz N; Arzac A; Rozas V; von Arx G; Delzon S; García-Cervigón AI
    Tree Physiol; 2017 Nov; 37(11):1493-1502. PubMed ID: 28575521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capacitive water release and internal leaf water relocation delay drought-induced cavitation in African Maesopsis eminii.
    Epila J; De Baerdemaeker NJF; Vergeynst LL; Maes WH; Beeckman H; Steppe K
    Tree Physiol; 2017 Apr; 37(4):481-490. PubMed ID: 28062725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.
    Villagra M; Campanello PI; Montti L; Goldstein G
    Tree Physiol; 2013 Mar; 33(3):285-96. PubMed ID: 23436182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation.
    Garcia-Forner N; Adams HD; Sevanto S; Collins AD; Dickman LT; Hudson PJ; Zeppel MJ; Jenkins MW; Powers H; Martínez-Vilalta J; Mcdowell NG
    Plant Cell Environ; 2016 Jan; 39(1):38-49. PubMed ID: 26081870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is xylem of angiosperm leaves less resistant to embolism than branches? Insights from microCT, hydraulics, and anatomy.
    Klepsch M; Zhang Y; Kotowska MM; Lamarque LJ; Nolf M; Schuldt B; Torres-Ruiz JM; Qin DW; Choat B; Delzon S; Scoffoni C; Cao KF; Jansen S
    J Exp Bot; 2018 Nov; 69(22):5611-5623. PubMed ID: 30184113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species.
    Nolf M; Creek D; Duursma R; Holtum J; Mayr S; Choat B
    Plant Cell Environ; 2015 Dec; 38(12):2652-61. PubMed ID: 26032606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO₂ concentration.
    Domec JC; Schäfer K; Oren R; Kim HS; McCarthy HR
    Tree Physiol; 2010 Aug; 30(8):1001-15. PubMed ID: 20566583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Root and branch hydraulic functioning and trait coordination across organs in drought-deciduous and evergreen tree species of a subtropical highland forest.
    Schönauer M; Hietz P; Schuldt B; Rewald B
    Front Plant Sci; 2023; 14():1127292. PubMed ID: 37377798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal hydraulic redistribution prevents the loss of root conductivity during drought.
    Prieto I; Ryel RJ
    Tree Physiol; 2014 Jan; 34(1):39-48. PubMed ID: 24436338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality.
    Adams HD; Zeppel MJB; Anderegg WRL; Hartmann H; Landhäusser SM; Tissue DT; Huxman TE; Hudson PJ; Franz TE; Allen CD; Anderegg LDL; Barron-Gafford GA; Beerling DJ; Breshears DD; Brodribb TJ; Bugmann H; Cobb RC; Collins AD; Dickman LT; Duan H; Ewers BE; Galiano L; Galvez DA; Garcia-Forner N; Gaylord ML; Germino MJ; Gessler A; Hacke UG; Hakamada R; Hector A; Jenkins MW; Kane JM; Kolb TE; Law DJ; Lewis JD; Limousin JM; Love DM; Macalady AK; Martínez-Vilalta J; Mencuccini M; Mitchell PJ; Muss JD; O'Brien MJ; O'Grady AP; Pangle RE; Pinkard EA; Piper FI; Plaut JA; Pockman WT; Quirk J; Reinhardt K; Ripullone F; Ryan MG; Sala A; Sevanto S; Sperry JS; Vargas R; Vennetier M; Way DA; Xu C; Yepez EA; McDowell NG
    Nat Ecol Evol; 2017 Sep; 1(9):1285-1291. PubMed ID: 29046541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Herbaceous Angiosperms Are Not More Vulnerable to Drought-Induced Embolism Than Angiosperm Trees.
    Lens F; Picon-Cochard C; Delmas CE; Signarbieux C; Buttler A; Cochard H; Jansen S; Chauvin T; Doria LC; Del Arco M; Delzon S
    Plant Physiol; 2016 Oct; 172(2):661-667. PubMed ID: 27268961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.