These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27146431)

  • 41. Ruthenia-based electrochemical supercapacitors: insights from first-principles calculations.
    Ozoliņš V; Zhou F; Asta M
    Acc Chem Res; 2013 May; 46(5):1084-93. PubMed ID: 23560700
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preferred growth orientation of metallic fcc nanowires under direct and alternating electrodeposition conditions.
    Maurer F; Brötz J; Karim S; Toimil Molares ME; Trautmann C; Fuess H
    Nanotechnology; 2007 Apr; 18(13):135709. PubMed ID: 21730394
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Targeted conversion of Ni in electroplating sludge to nickel ferrite nanomaterial with stable lithium storage performance.
    Weng C; Sun X; Han B; Ye X; Zhong Z; Li W; Liu W; Deng H; Lin Z
    J Hazard Mater; 2020 Jul; 393():122296. PubMed ID: 32126421
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vapor-Phase Polymerized Poly(3,4-Ethylenedioxythiophene) on a Nickel Nanowire Array Film: Aqueous Symmetrical Pseudocapacitors with Superior Performance.
    Xie Q; Xu Y; Wang Z; Xu C; Zou P; Lin Z; Xu C; Yang C; Kang F; Wong CP
    PLoS One; 2016; 11(11):e0166529. PubMed ID: 27861534
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly transparent TiO
    Lv X; Xu X; Zhang Y; Wright DS; Zhang Y; Zhang C
    Nanotechnology; 2020 Aug; 31(35):355201. PubMed ID: 32408277
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures.
    Wu Y; Xiang J; Yang C; Lu W; Lieber CM
    Nature; 2004 Jul; 430(6995):61-5. PubMed ID: 15229596
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CuGeO₃ nanowires covered with graphene as anode materials of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu S; Wang R; Wang Z; Lin Z
    Nanoscale; 2014 Jul; 6(14):8350-8. PubMed ID: 24934278
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Redox actuation of a microcantilever driven by a self-assembled ferrocenylundecanethiolate monolayer: an investigation of the origin of the micromechanical motion and surface stress.
    Norman LL; Badia A
    J Am Chem Soc; 2009 Feb; 131(6):2328-37. PubMed ID: 19166296
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of Platinum-nickel Nanowires and Optimization for Oxygen Reduction Performance.
    Alia SM; Pivovar BS
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29757288
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrochromic nanostructures grown on a silicon nanowire template.
    Kim Y; Baek J; Kim MH; Choi HJ; Kim E
    Ultramicroscopy; 2008 Sep; 108(10):1224-7. PubMed ID: 18579309
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery.
    Qiu MC; Yang LW; Qi X; Li J; Zhong JX
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3614-8. PubMed ID: 21077626
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices.
    Xu X; Yan M; Tian X; Yang C; Shi M; Wei Q; Xu L; Mai L
    Nano Lett; 2015 Jun; 15(6):3879-84. PubMed ID: 25989463
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single-crystalline metal germanate nanowire-carbon textiles as binder-free, self-supported anodes for high-performance lithium storage.
    Li W; Wang X; Liu B; Xu J; Liang B; Luo T; Luo S; Chen D; Shen G
    Nanoscale; 2013 Nov; 5(21):10291-9. PubMed ID: 24056774
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Building energy storage device on a single nanowire.
    Gowda SR; Leela Mohana Reddy A; Zhan X; Ajayan PM
    Nano Lett; 2011 Aug; 11(8):3329-33. PubMed ID: 21755944
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Conducting Polymer Microtubes for Bioactuators.
    Eslamian M; Mirab F; Majd S; Abidian MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3693-3696. PubMed ID: 31946677
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrochemical Energy Storage Application and Degradation Analysis of Carbon-Coated Hierarchical NiCo2S4 Core-Shell Nanowire Arrays Grown Directly on Graphene/Nickel Foam.
    Zou R; Yuen MF; Yu L; Hu J; Lee CS; Zhang W
    Sci Rep; 2016 Feb; 6():20264. PubMed ID: 26833359
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Torsional carbon nanotube artificial muscles.
    Foroughi J; Spinks GM; Wallace GG; Oh J; Kozlov ME; Fang S; Mirfakhrai T; Madden JD; Shin MK; Kim SJ; Baughman RH
    Science; 2011 Oct; 334(6055):494-7. PubMed ID: 21998253
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface.
    Zhang L; Petit T; Lu Y; Kratochvil BE; Peyer KE; Pei R; Lou J; Nelson BJ
    ACS Nano; 2010 Oct; 4(10):6228-34. PubMed ID: 20873764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks.
    Rathmell AR; Nguyen M; Chi M; Wiley BJ
    Nano Lett; 2012 Jun; 12(6):3193-9. PubMed ID: 22642652
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simultaneous electrical and plasmonic monitoring of potential induced ion adsorption on metal nanowire arrays.
    MacKenzie R; Fraschina C; Dielacher B; Sannomiya T; Dahlin AB; Vörös J
    Nanoscale; 2013 Jun; 5(11):4966-75. PubMed ID: 23632884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.